ImageVerifierCode 换一换
格式:DOC , 页数:23 ,大小:2.41MB ,
资源ID:20728      下载积分:11 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/20728.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届江苏省苏州市苏苑高级中学高考压轴卷数学试卷(含解析).doc)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届江苏省苏州市苏苑高级中学高考压轴卷数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1体育教师指导4个学生训练转身动作,预备时,4个学生全部面朝正南方向站成一排.训练时,每次都让3个学生“向后转”,若4个

2、学生全部转到面朝正北方向,则至少需要“向后转”的次数是( )A3B4C5D62赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为周髀算经一书作序时,介绍了“勾股圆方图”,又称“赵爽弦图”(以弦为边长得到的正方形是由个全等的直角三角形再加上中间的一个小正方形组成的,如图(1),类比“赵爽弦图”,可类似地构造如图(2)所示的图形,它是由个全等的三角形与中间的一个小正六边形组成的一个大正六边形,设,若在大正六边形中随机取一点,则此点取自小正六边形的概率为( )ABCD3已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( )ABCD4设全集U=R,集合,则()ABCD

3、5某程序框图如图所示,若输出的,则判断框内为( )ABCD6已知斜率为k的直线l与抛物线交于A,B两点,线段AB的中点为,则斜率k的取值范围是( )ABCD7如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关8向量,且,则( )ABCD9已知等差数列的前项和为,若,则等差数列公差()A2BC3D410若集合,则( )ABCD11设等差数列的前项和为,若,则( )A10B9C8D712已知函数的图象如图所示,则下列说法错误的是( )A函数在上单调递减B函数在上单调递增C函数的对称中心是D函数的对称轴是二、填空题:本题共4小题

4、,每小题5分,共20分。13设数列的前项和为,且对任意正整数,都有,则_14已知函数在上仅有2个零点,设,则在区间上的取值范围为_15已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则_,双曲线的离心率为_16已知数列的前项和为,且成等差数列,数列的前项和为,则满足的最小正整数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)第十三届全国人大常委会第十一次会议审议的固体废物污染环境防治法(修订草案)中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中为了解某城市居民的垃圾分类意识与政府相关

5、法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望参考公式:,其中下面的临界值表仅供参考18(12分)某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)

6、班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.(1)根据条形统计图,估计本届高三学生本科上线率.(2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.(i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);(ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.可能用到的参考数据:取,.19(12分)在中,()求角的大小;()若,求的值20(12分)对于给

7、定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.21(12分)设函数,是函数的导数.(1)若,证明在区间上没有零点;(2)在上恒成立,求的取值范围.22(10分)已知的图象在处的切线方程为.(1)求常数的值;(2)若方程在区间上有两个不同的实根,求实数的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】通过列举法,列举出同学的朝向,然后即可求出需要向后转的

8、次数.【题目详解】“正面朝南”“正面朝北”分别用“”“”表示,利用列举法,可得下表,原始状态第1次“向后转”第2次“向后转”第3次“向后转”第4次“向后转”可知需要的次数为4次.故选:B.【答案点睛】本题考查的是求最小推理次数,一般这类题型构造较为巧妙,可通过列举的方法直观感受,属于基础题.2、D【答案解析】设,则,小正六边形的边长为,利用余弦定理可得大正六边形的边长为,再利用面积之比可得结论.【题目详解】由题意,设,则,即小正六边形的边长为,所以,在中,由余弦定理得,即,解得,所以,大正六边形的边长为,所以,小正六边形的面积为,大正六边形的面积为,所以,此点取自小正六边形的概率.故选:D.【

9、答案点睛】本题考查概率的求法,考查余弦定理、几何概型等基础知识,考查运算求解能力,属于基础题3、D【答案解析】根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【题目详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,则,解得:设,则,解得:,则本题正确选项:【答案点睛】本题考查根据直线

10、与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.4、A【答案解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【题目详解】,则,故选:A【答案点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题5、C【答案解析】程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前11第一圈24是第二圈311是第三圈 426是第四圈 557是第五圈 6120否故退出循环的条件应为k5?本题选择C选项.点睛:使用循环结构寻

11、数时,要明确数字的结构特征,决定循环的终止条件与数的结构特征的关系及循环次数尤其是统计数时,注意要统计的数的出现次数与循环次数的区别6、C【答案解析】设,设直线的方程为:,与抛物线方程联立,由得,利用韦达定理结合已知条件得,代入上式即可求出的取值范围【题目详解】设直线的方程为:, ,联立方程,消去得:,且,线段的中点为,,把 代入,得,故选:【答案点睛】本题主要考查了直线与抛物线的位置关系,考查了韦达定理的应用,属于中档题7、B【答案解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【题目详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四

12、棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【答案点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.8、D【答案解析】根据向量平行的坐标运算以及诱导公式,即可得出答案.【题目详解】故选:D【答案点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.9、C【答案解析】根据等差数列的求和公式即可得出【题目详解】a1=12,S5=90,512+ d=90,解得d=1故选C【答案点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题10、A【答

13、案解析】用转化的思想求出中不等式的解集,再利用并集的定义求解即可【题目详解】解:由集合,解得,则故选:【答案点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键属于基础题11、B【答案解析】根据题意,解得,得到答案.【题目详解】,解得,故.故选:.【答案点睛】本题考查了等差数列的求和,意在考查学生的计算能力.12、B【答案解析】根据图象求得函数的解析式,结合余弦函数的单调性与对称性逐项判断即可.【题目详解】由图象可得,函数的周期,所以.将点代入中,得,解得,由,可得,所以.令,得,故函数在上单调递减,当时,函数在上单调递减,故A正确;令,得,故函数在上单调递增.当时,函数在上单调递增,故B错误;令,得,故函数的对称中心是,故C正确;令,得,故函数的对称轴是,故D正确.故选:B.【答案点睛】本题考查由图象求余弦型函数的解析式,同时也考查了余弦型函数的单调性与对称性的判断,考查推理能力与计算能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】利用行列式定义,得到与的关系,赋值,即可求出结果。【题目详解】由,令,得,解得。【答案点睛】本题主要考查行列式定义的应用。14、

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2