ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:1.65MB ,
资源ID:20798      下载积分:14 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/20798.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023届河北省滦南县高考数学三模试卷(含解析).doc)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023届河北省滦南县高考数学三模试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2若复数满足,则的虚部为( )A5BCD-53若,则“”的一个充分不必要条件是ABC且D或4运行

2、如图所示的程序框图,若输出的的值为99,则判断框中可以填( )ABCD5已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为( )ABCD6已知向量,且,则等于( )A4B3C2D17已知集合,则集合真子集的个数为( )A3B4C7D88设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD9已知函数,则函数的图象大致为( )ABCD10已知a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11 的内角的对边分别

3、为,已知,则角的大小为( )ABCD12已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13春天即将来临,某学校开展以“拥抱春天,播种绿色”为主题的植物种植实践体验活动已知某种盆栽植物每株成活的概率为,各株是否成活相互独立该学校的某班随机领养了此种盆栽植物10株,设为其中成活的株数,若的方差,则_14已知,(,),则_15在的展开式中,项的系数是_(用数字作答)16已知数列满足,且恒成立,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在矩形中,点是边上一点,且,点是的

4、中点,将沿着折起,使点运动到点处,且满足.(1)证明:平面;(2)求二面角的余弦值.18(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.19(12分)如图,已知正方形所在平面与梯形所在平面垂直,BMAN,(1)证明:平面;(2)求点N到平面CDM的距离20(12分)已知数列an的各项均为正,Sn为数列an的前n项和,an2+2an4Sn+1(1)求an的通项公式;(2)设bn,求数列bn的前n项和21(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知:,:,:.(1)求与的极坐标方程(2)若与交于点A,与交于点B

5、,求的最大值.22(10分)在ABC中,角A,B,C的对边分别为a,b,c,已知,()求的大小;()若,求面积的最大值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据题意得到充分性,验证得出不必要,得到答案.【题目详解】,当时,充分性;当,取,验证成立,故不必要.故选:.【答案点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.2、C【答案解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【题目详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【答

6、案点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题3、C【答案解析】,当且仅当 时取等号.故“且 ”是“”的充分不必要条件.选C4、C【答案解析】模拟执行程序框图,即可容易求得结果.【题目详解】运行该程序:第一次,;第二次,;第三次,;第九十八次,;第九十九次,此时要输出的值为99.此时.故选:C.【答案点睛】本题考查算法与程序框图,考查推理论证能力以及化归转化思想,涉及判断条件的选择,属基础题.5、B【答案解析】根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【题目详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,又以为直径的圆经过点,则,

7、即,解得,所以,即,即,所以,双曲线的离心率为.故选:B.【答案点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.6、D【答案解析】由已知结合向量垂直的坐标表示即可求解【题目详解】因为,且,则故选:【答案点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题7、C【答案解析】解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【题目详解】解:由,得所以集合的真子集个数为个.故选:C【答案点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.8、D【答案解析】根据函数为上的奇函

8、数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【题目详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【答案点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.9、A【答案解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【题目详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,排除D选项.故A选项正确.故选:A【答案点睛】本题考查了函数图像的性质,属于中档题.10、D【答案解析】根据面面平

9、行的判定及性质求解即可【题目详解】解:a,b,a,b,由ab,不一定有,与可能相交;反之,由,可得ab或a与b异面,a,b是两条不同的直线,是两个不同的平面,且a,b,a,b,则“ab“是“”的既不充分也不必要条件故选:D.【答案点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题11、A【答案解析】先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【题目详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【答案点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.12、B【答案解析】由题意可得c=,设右焦点为F,由|OP|=|OF|=

10、|OF|知,PFF=FPO,OFP=OPF,所以PFF+OFP=FPO+OPF,由PFF+OFP+FPO+OPF=180知,FPO+OPF=90,即PFPF在RtPFF中,由勾股定理,得|PF|=,由椭圆定义,得|PF|+|PF|=2a=4+8=12,从而a=6,得a2=36,于是 b2=a2c2=36=16,所以椭圆的方程为故选B点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可知:,且

11、,从而可得值【题目详解】由题意可知:,即,故答案为:【答案点睛】本题考查二项分布的实际应用,考查分析问题解决问题的能力,考查计算能力,属于中档题14、【答案解析】先利用倍角公式及差角公式把已知条件化简可得,平方可得.【题目详解】,则,平方可得故答案为:.【答案点睛】本题主要考查三角恒等变换,倍角公式的合理选择是求解的关键,侧重考查数学运算的核心素养.15、 【答案解析】的展开式的通项为:.令,得.答案为:-40.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项

12、,再由通项写出第r1项,由特定项得出r值,最后求出其参数.16、【答案解析】易得,所以是等差数列,再利用等差数列的通项公式计算即可.【题目详解】由已知,因,所以,所以数列是以为首项,3为公差的等差数列,故,所以.故答案为:【答案点睛】本题考查由递推数列求数列中的某项,考查学生等价转化的能力,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【答案解析】(1)取的中点,连接,由,进而,由,得. 进而平面,进而结论可得证(2)(方法一)过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,求得平面平面的法向量

13、,由二面角公式求解即可(方法二)取的中点,上的点,使,连接,得,得二面角的平面角为,再求解即可【题目详解】(1)证明:取的中点,连接,由已知得,所以,又点是的中点,所以.因为,点是线段的中点,所以.又因为,所以,从而平面,所以,又,不平行,所以平面.(2)(方法一)由(1)知,过点作的平行线交于点,以点为坐标原点,所在直线分别为轴、轴、轴建立如图所示的空间直角坐标系,则点,所以,.设平面的法向量为,由,得,令,得.同理,设平面的法向量为,由,得,令,得.所以二面角的余弦值为.(方法二)取的中点,上的点,使,连接,易知,.由(1)得,所以平面,所以,又,所以平面,所以二面角的平面角为.又计算得,所以.【答案点睛】本题考查线面垂直的判定,考查空间向量求二面角,考查空间想象及计算能力,是中档题18、(1);(2)4【答案解析】(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【题目详解】(1)当时不等式可化为 当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,即而当且仅当:,即,即时等号成立,综上实数最大值为4.【答案点睛】本题考查

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2