ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:1,001.98KB ,
资源ID:20909      下载积分:13 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/20909.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年中考数学必考考点专题33最值问题含解析.docx)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年中考数学必考考点专题33最值问题含解析.docx

1、专题33 最值问题 专题知识回顾 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数(a、b、c为常数且)其性质中有若当时,y有最小值。;若当时,y有最大值。2.一次函数的增减性 一次函数的自变量x的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得出y的最值。4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它

2、们的解往往离不开函数。5. 利用非负数的性质在实数范围内,显然有,当且仅当时,等号成立,即的最小值为k。6. 零点区间讨论法用“零点区间讨论法”消去函数y中绝对值符号,然后求出y在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。7. 利用不等式与判别式求解在不等式中,是最大值,在不等式中,是最小值。8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。专题典型题考法及解析 【例题1】(经典题)二次函数y=2(x3)24的最小值为 【答案】4【解析】题中所给的解析式为顶点式,可直接得到

3、顶点坐标,从而得出解答二次函数y=2(x3)24的开口向上,顶点坐标为(3,4),所以最小值为4【例题2】(2023年江西)如图,AB是O的弦,AB=5,点C是O上的一个动点,且ACB=45,若点M、N分别是AB、AC的中点,则MN长的最大值是 【答案】【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值如图,点M,N分别是AB,AC的中点,MN=BC,当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交O于点C,连接AC,BC是O的直径,BAC=90ACB=45,AB=5,ACB=45,BC=5,MN最大=【例题3】

4、(2023年湖南张家界)已知抛物线yax2bxc(a0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC3(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AMBC,垂足为M,求证:四边形ADBM为正方形;(3)点P为抛物线在直线BC下方图形上的一动点,当PBC面积最大时,求P点坐标及最大面积的值;(4)若点Q为线段OC上的一动点,问AQ12QC是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由【思路分析】(1)将A、B、C三点坐标代入抛物线的解析式即可求出a、b、c的值(当然用两根式做更方便);(2)先证四边形AMBD为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正

5、方形;(3)如答图2,过点P作PFAB于点F,交BC于点E,令P(m,m24m3),易知直线BC的解析式为yx3,则E(m,m3),PE(m3)(m24m3)m23m再由SPBCSPBESCPE,转化为12PEOB123(m23m),最后将二次函数化为顶点式即可锁定SPBC的最大值与点P坐标;(4)解决本问按两步走:一找(如答图3,设OQt,则CQ3t,AQ12QC,取CQ的中点G,以点Q为圆心,QG的长为半径作Q,则当Q过点A时,AQ12QCQ的直径最小)、二求(由 AQ12QC,解关于t的方程即可)【解题过程】(1)抛物线yax2bxc(a0)过点A(1,0),B(3,0)两点,令抛物线解

6、析为ya(x1)(x3)该抛物线过点C(0,3),3a(01)(03),解得a1抛物线的解析式为y(x1)(x3),即yx24x3yx24x3(x2)21,抛物线的顶点D的坐标为(2,1)综上,所求抛物线的解析式为yx24x3,顶点坐标为(2,1)(2)如答图1,连接AD、BD,易知DADBOBOC,BOC90,MBA45D(2,1),A(3,0),DBA45DBM90同理,DAM90又AMBC,四边形ADBM为矩形又DADB,四边形ADBM为正方形图1(3)如答图2,过点P作PFAB于点F,交BC于点E,令P(m,m24m3),易知直线BC的解析式为yx3,则E(m,m3),PE(m3)(m

7、24m3)m23m图2图3 SPBCSPBESCPE12PEBF12PEOF12PEOB123(m23m)32 (m32)2278,当m32时,SPBC有最大值为278,此时P点的坐标为(32,34)(4) 如答图3,设OQt,则CQ3t,AQ12QC,取CQ的中点G,以点Q为圆心,QG的长为半径作Q,则当Q过点A时,AQ12QCQ的直径最小,此时,t2+1=12(3-t),解得t2631,于是AQ12QC的最小值为3t3(2631)4263 专题典型训练题 1.(2023年河南)要使代数式2-3x有意义,则x的( )A.最大值为23 B.最小值为23 C.最大值为32 D.最大值为32【答案

8、】A.【解析】要使代数式2-3x有意义,必须使2-3x0,即x23,所以x的最大值为23。2.(2023年四川绵阳)不等边三角形的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为_。【答案】5 【解析】设a、b、c三边上高分别为4、12、h因为,所以又因为,代入得,所以又因为,代入 得,所以 所以3h6,故整数h的最大值为5。3.(2023年齐齐哈尔)设a、b为实数,那么的最小值为_。【答案】-1 【解析】当,即时,上式等号成立。故所求的最小值为1。4.(2023年云南)如图,MN是O的直径,MN=4,AMN=40,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+P

9、B的最小值为 【答案】2【解析】过A作关于直线MN的对称点A,连接AB,由轴对称的性质可知AB即为PA+PB的最小值,由对称的性质可知=,再由圆周角定理可求出AON的度数,再由勾股定理即可求解过A作关于直线MN的对称点A,连接AB,由轴对称的性质可知AB即为PA+PB的最小值,连接OB,OA,AA,AA关于直线MN对称,=,AMN=40,AON=80,BON=40,AOB=120,过O作OQAB于Q,在RtAOQ中,OA=2,AB=2AQ=2,即PA+PB的最小值25.(2023年海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同

10、(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1x15)之间的函数关系式,并求出第几天时销售利润最大?时间(天)1x99x15x15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)803x120x储存和损耗费用(元)403x3x264x400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】看解析。【解析】(1)设该种水果每次降

11、价的百分率为x,则第一次降价后的价格为10(1x),第二次降价后的价格为10(1x)2,进而可得方程;(2)分两种情况考虑,先利用“利润(售价进价)销量储存和损耗费用”,再分别求利润的最大值,比较大小确定结论;(3)设第15天在第14天的价格基础上降a元,利用不等关系“(2)中最大利润(8.1a4.1)销量储存和损耗费用127.5”求解解答:(1)设该种水果每次降价的百分率为x,依题意得:10(1x)28.1解方程得:x10.110%,x21.9(不合题意,舍去)答:该种水果每次降价的百分率为10%(2) 第一次降价后的销售价格为:10(110%)9(元/斤),当1x9时,y(94.1)(80

12、3x)(403x)17.7x352;当9x15时,y(8.14.1)(120x)(3x264x400)3x260x80,综上,y与x的函数关系式为:y当1x9时,y17.7x352,当x1时,y最大334.3(元);当9x15时,y3x260x803(x10)2380,当x10时,y最大380(元);334.3380,在第10天时销售利润最大(3)设第15天在第14天的价格上最多可降a元,依题意得:380(8.1a4.1)(12015)(31526415400)127.5,解得:a0.5,则第15天在第14天的价格上最多可降0.5元6.(2023年湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最

13、高产量为40只,且每日产出的产品全部售出,已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为,。(1)当日产量为多少时,每日获得的利润为1750元;(2)当日产量为多少时,可获得最大利润?最大利润是多少?【答案】看解析。【解析】(1)根据题意得: 整理得 解得,(不合题意,舍去)(2)由题意知,利润为 所以当时,最大利润为1950元。7.(2023年吉林)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少?【答案】看解析。【解析】设招聘甲种工种的工人为x人,则乙种工种的工人为人,由题意得: 所以设所招聘的工人共需付月工资y元,则有: ()因为y随x的增大而减小 所以当时,(元)8.(经典题)求的最大值与最小值。【答案】最大值是3,最小值是。【解析】此题要求出最大值与最小值,直接求则较困难,若根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得出y的最值。设,整理得即因为x是实数,所以即解得所以的最大值是3,最小值是。9.(经典题)求代数式的最大值和最小值。【答案】最大值为

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2