ImageVerifierCode 换一换
格式:DOC , 页数:32 ,大小:1.50MB ,
资源ID:21297      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/21297.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年中考数学基础题型提分讲练专题20以相似三角形为背景的证明与计算含解析.doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年中考数学基础题型提分讲练专题20以相似三角形为背景的证明与计算含解析.doc

1、专题20 以相似三角形为背景的证明与计算考点分析【例1】(2023年辽宁中考真题)已知,在RtABC中,ACB90,D是BC边上一点,连接AD,分别以CD和AD为直角边作RtCDE和RtADF,使DCEADF90,点E,F在BC下方,连接EF(1)如图1,当BCAC,CECD,DFAD时,求证:CADCDF,BDEF;(2)如图2,当BC2AC,CE2CD,DF2AD时,猜想BD和EF之间的数量关系?并说明理由【答案】(1)见解析;见解析;(2)BDEF,理由见解析.【解析】(1)证明:ACB90,CAD+ADC90,CDF+ADC90,CADCDF;作FHBC交BC的延长线于H,则四边形FE

2、CH为矩形,CHEF,在ACD和DHF中,即,;(2),理由如下:作交的延长线于,则四边形为矩形,即,GF2CD,BC2AC,CE2CD,BCDG,GFCE,BDCG,GFCE,GFCE,G90,四边形FECG为矩形,CGEF,BDEF【点睛】此题考查相似三角形的判定与性质,全等三角形的判定与性质,矩形的判定与性质,解题关键在于作辅助线和掌握各判定定理.【例2】 (2023年辽宁中考真题)如图,中,DE垂直平分AB,交线段BC于点E(点E与点C不重合),点F为AC上一点,点G为AB上一点(点G与点A不重合),且(1)如图1,当时,线段AG和CF的数量关系是 (2)如图2,当时,猜想线段AG和C

3、F的数量关系,并加以证明(3)若,请直接写出CF的长【答案】(1);(2),理由见解析;(3)2.5或5【解析】解:(1)相等,理由:如图1,连接AE,DE垂直平分AB,;故答案为:;(2),理由:如图2,连接AE,DE垂直平分AB,在中,;(3)当G在DA上时,如图3,连接AE,DE垂直平分AB,过A作于点H,;当点G在BD上,如图4,同(1)可得,综上所述,CF的长为2.5或5【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键考点集训1(2023年山东中考真题)如图1,在RtABC中,B=90,BC=2AB

4、=8,点D,E分别是边BC,AC的中点,连接DE,将EDC绕点C按顺时针方向旋转,记旋转角为.(1)问题发现 当时, ; 当时, (2)拓展探究试判断:当0360时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当EDC旋转至A、D、E三点共线时,直接写出线段BD的长.【答案】(1),.(2)无变化;理由参见解析.(3),.【解析】(1)当=0时,RtABC中,B=90,AC=,点D、E分别是边BC、AC的中点,,BD=82=4,如图1,当=180时,可得ABDE,(2)如图2,当0360时,的大小没有变化,ECD=ACB,ECA=DCB,又,ECADCB,(3)如图3,AC=4,C

5、D=4,CDAD,AD=AD=BC,AB=DC,B=90,四边形ABCD是矩形,BD=AC=如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,AC=,CD=4,CDAD,AD=,点D、E分别是边BC、AC的中点,DE=2,AE=AD-DE=8-2=6,由(2),可得,BD=综上所述,BD的长为或2(2023年江苏初三期末)如图,四边形ABCD中,AC平分DAB,ADC=ACB=90,E为AB的中点,(1)求证:AC2=ABAD;(2)求证:CEAD;(3)若AD=4,AB=6,求的值【答案】(1)见解析(2)见解析(3)【解析】解:(1)证明:AC平分DABDA

6、C=CABADC=ACB=90ADCACB即AC2=ABAD(2)证明:E为AB的中点CE=AB=AEEAC=ECADAC=CABDAC=ECACEAD(3)CEADAFDCFECE=ABCE=6=3AD=43(2023年四川中考真题)如图,DB平分ADC,过点B作交AD于M连接CM交DB于N(1)求证:;(2)若,求MN的长【答案】(1)见解析;(2).【解析】证明:(1)DB平分,且,(2),且,且,且【点睛】考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC的长度是本题的关键4(2023年江苏泰州中学附属初中初三月考)如图,RtABC中,ACB=90,AC=6cm,BC=8

7、cm动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0t),连接MN(1)若BMN与ABC相似,求t的值;(2)连接AN,CM,若ANCM,求t的值【答案】(1)BMN与ABC相似时,t的值为或;(2)t=【解析】(1)由题意知,BM=3tcm,CN=2tcm,BN=(82t)cm,BA=10(cm),当BMNBAC时,解得:t=;当BMNBCA时,解得:t=,BMN与ABC相似时,t的值为或;(2)过点M作MDCB于点D,由题意得:DM=BMsinB=(cm),BD=BMcosB=(cm),BM=3tc

8、m,CN=2tcm,CD=()cm,ANCM,ACB=90,CAN+ACM=90,MCD+ACM=90,CAN=MCD,MDCB,MDC=ACB=90,CANDCM,解得t=考点:1相似三角形的判定与性质;2解直角三角形;3动点型;4分类讨论;5综合题;6压轴题5(2023年湖北中考真题)在中,是上一点,连接(1)如图1,若,是延长线上一点,与垂直,求证:(2)过点作,为垂足,连接并延长交于点.如图2,若,求证:如图3,若是的中点,直接写出的值(用含的式子表示)【答案】(1)证明见解析;(2)证明见解析;【解析】 (1)延长交于点,与垂直,;(2)过点作交的延长线于点,与垂直,由(1),得,即

9、; 过点C作CD/BP交AB的延长线于点D,延长AM交CD于点H,PCH=BPQ,BPM=CHM=90,又BMP=CMH,BM=CM,BPMCHM,BP=CH,PM=HM,PH=2PM,PMB=BMA,ABM=BPM=90,ABMBPM,在RtPCH中,tanPCH=,tanBPQ=,又BC=2BM,tanBPQ=.【点睛】本题考查了全等三角形的判定与性质,相似三角形的判定与性质,三角函数,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.6(2023年辽宁初三期中)如图,在ABC中,AB=AC,点P、D分别是BC、AC边上的点,且APD=B,(1)求证:ACCD

10、=CPBP;(2)若AB=10,BC=12,当PDAB时,求BP的长【答案】(1)证明见解析;(2). 【解析】解:(1)AB=AC,B=CAPD=B,APD=B=CAPC=BAP+B,APC=APD+DPC,BAP=DPC,ABPPCD,ABCD=CPBPAB=AC,ACCD=CPBP;(2)PDAB,APD=BAPAPD=C,BAP=CB=B,BAPBCA,AB=10,BC=12,BP=“点睛”本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明ACCD=CPBP转化为证明ABCD=CPBP是解决第(1)小题的关键,证到BAP=C进而得到BA

11、PBCA是解决第(2)小题的关键7(2023年山西初三期末)如图,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90,点P为射线BD,CE的交点(1)求证:BD=CE;(2)若AB=2,AD=1,把ADE绕点A旋转,当EAC=90时,求PB的长;【答案】(1)证明见解析;(2)PB的长为或【解析】解:(1)ABC和ADE是等腰直角三角形,BAC=DAE=90,AB=AC,AD=AE,DAB=CAE,ADBAEC,BD=CE(2)解:当点E在AB上时,BE=ABAE=1EAC=90,CE=同(1)可证ADBAEC,DBA=ECAPEB=AEC,PEBAEC,PB=当点E在BA延长线

12、上时,BE=3EAC=90,CE=同(1)可证ADBAEC,DBA=ECABEP=CEA,PEBAEC,PB=综上所述,PB的长为或【点睛】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得PEBAEC是解题的关键8(2023年山东初三)如图,在四边形ABCD中,ACBD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分ABE; (2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长; (3)如图,若点F为AB的中点,连结FN、FM,求证:MFNBDC【答案】(1)证明见解析;(2);(3)证明见解析. 【解析】(1)AB=AC,ABC=ACB,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2