ImageVerifierCode 换一换
格式:DOC , 页数:21 ,大小:2.06MB ,
资源ID:21850      下载积分:14 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/21850.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(云南省昭通市五校2023学年高考数学二模试卷(含解析).doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

云南省昭通市五校2023学年高考数学二模试卷(含解析).doc

1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某装饰公司制作一种扇形板状装饰品,其圆心角为120,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧

2、的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( )A58厘米B63厘米C69厘米D76厘米2公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A48B36C24D123如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到

3、圆锥顶点的距离等于( )AB1CD4已知直线:与椭圆交于、两点,与圆:交于、两点.若存在,使得,则椭圆的离心率的取值范围为( )ABCD5已知甲盒子中有个红球,个蓝球,乙盒子中有个红球,个蓝球,同时从甲乙两个盒子中取出个球进行交换,(a)交换后,从甲盒子中取1个球是红球的概率记为.(b)交换后,乙盒子中含有红球的个数记为.则( )ABCD6如图,在棱长为4的正方体中,E,F,G分别为棱 AB,BC,的中点,M为棱AD的中点,设P,Q为底面ABCD内的两个动点,满足平面EFG,则的最小值为( )ABCD7已知集合,集合,则等于( )ABCD8如图,平面ABCD,ABCD为正方形,且,E,F分别是

4、线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为( )ABCD9执行如图所示的程序框图,则输出的结果为( )ABCD10已知.给出下列判断:若,且,则;存在使得的图象向右平移个单位长度后得到的图象关于轴对称;若在上恰有7个零点,则的取值范围为;若在上单调递增,则的取值范围为.其中,判断正确的个数为( )A1B2C3D411已知集合,若,则的最小值为( )A1B2C3D412阅读下侧程序框图,为使输出的数据为,则处应填的数字为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数f(x)若关于x的方程f(x)kx有两个不同的实根,则实数k的取值范围是_14正四面体的一个顶

5、点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是_.15某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二年级被抽取的人数为_16各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知曲线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求和的普通方程;(2)过坐标原点作直线交曲线于点(异于),交曲线于点,求的最小值.18(12分)等差数列中,(1)求的通项公式;(2)设,记为数列前项的和,若

6、,求19(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.20(12分)已知抛物线:()的焦点到点的距离为.(1)求抛物线的方程;(2)过点作抛物线的两条切线,切点分别为,点、分别在第一和第二象限内,求的面积.21(12分)某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).表中,.(1)根据散点图判断,与哪一个更适宜作烧水时间y关于开关旋钮旋转

7、的弧度数x的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y关于x的回归方程;(3)若旋转的弧度数x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,.22(10分)已知非零实数满足 (1)求证:; (2)是否存在实数,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利

8、用弧长公式计算即可.【题目详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【答案点睛】本题主要考查了扇形弧长的计算,属于容易题.2、C【答案解析】由开始,按照框图,依次求出s,进行判断。【题目详解】 ,故选C.【答案点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。3、D【答案解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【题目详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【答案点睛】本小

9、题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.4、A【答案解析】由题意可知直线过定点即为圆心,由此得到坐标的关系,再根据点差法得到直线的斜率与坐标的关系,由此化简并求解出离心率的取值范围.【题目详解】设,且线过定点即为的圆心,因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以.故选:A.【答案点睛】本题考查椭圆与圆的综合应用,着重考查了椭圆离心率求解以及点差法的运用,难度一般.通过运用点差法达到“设而不求”的目的,大大简化运算.5、A【答案解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从

10、而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望.详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球,红球的个数就会出现三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是五种情况,所以分析可以求得,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果.6、C【答案解析】把

11、截面画完整,可得在上,由知在以为圆心1为半径的四分之一圆上,利用对称性可得的最小值【题目详解】如图,分别取的中点,连接,易证共面,即平面为截面,连接,由中位线定理可得,平面,平面,则平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,正方体中平面,从而有,在以为圆心1为半径的四分之一圆(圆在正方形内的部分)上,显然关于直线的对称点为,当且仅当共线时取等号,所求最小值为故选:C【答案点睛】本题考查空间距离的最小值问题,解题时作出正方体的完整截面求出点轨迹是第一个难点,第二个难点是求出点轨迹,第三个难点是利用对称性及圆的性质求得最小值7、B【答案解析】求出中不等式的解集确定出集合,之后求得

12、.【题目详解】由,所以,故选:B.【答案点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.8、C【答案解析】分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系,再利用向量法求异面直线EF与BD所成角的余弦值.【题目详解】由题可知,分别以AB,AD,AP所在直线为x轴,y轴,轴,建立如图所示的空间直角坐标系.设.则.故异面直线EF与BD所成角的余弦值为.故选:C【答案点睛】本题主要考查空间向量和异面直线所成的角的向量求法,意在考查学生对这些知识的理解掌握水平.9、D【答案解析】循环依次为 直至结束循环,输出,选D.点

13、睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.10、B【答案解析】对函数化简可得,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案.【题目详解】因为,所以周期.对于,因为,所以,即,故错误;对于,函数的图象向右平移个单位长度后得到的函数为,其图象关于轴对称,则,解得,故对任意整数,所以错误;对于,令,可得,则,因为,所以在上第1个零点,且,所以第7个零点,若存在第8个零点,

14、则,所以,即,解得,故正确;对于,因为,且,所以,解得,又,所以,故正确.故选:B.【答案点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.11、B【答案解析】解出,分别代入选项中 的值进行验证.【题目详解】解:,.当 时,,此时不成立.当 时,,此时成立,符合题意.故选:B.【答案点睛】本题考查了不等式的解法,考查了集合的关系.12、B【答案解析】考点:程序框图分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案解:程序在运行过程中各变量的值如下表示: S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i5时退出,故选B二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由图可知,当直线y

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2