ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:2.09MB ,
资源ID:2253391      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2253391.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于近红外光谱技术及ELM...不同生长阶段米象的分类识别_鲁玉杰.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

基于近红外光谱技术及ELM...不同生长阶段米象的分类识别_鲁玉杰.pdf

1、2023 年 2 月第 44 卷第 1 期河南工业大学学报(自然科学版)Journal of Henan University of Technology(Natural Science Edition)Feb.2023Vol.44 No.1收稿日期:2022-03-10基金项目:国家重点研发计划项目(2019YFC1605304)作者简介:鲁玉杰(1971),女,河南南阳人,教授,研究方向为储粮害虫生态学和分子生态学,E-mail:。基于近红外光谱技术及 ELM 对小麦中不同生长阶段米象的分类识别鲁玉杰1,2,王文敬1,张俊东1,王争艳1,卢少华11.河南工业大学 粮油食品学院,河南 郑州

2、4500012.江苏科技大学 粮食学院,江苏 镇江 212100摘要:对粮食中隐蔽性害虫的早期诊断和检测,不仅可以减少因害虫取食造成的粮食产后损失,还可以减少化学药剂的使用,对于保证粮食品质和减少环境污染具有重要的意义。基于近红外光谱技术与极限学习机(ELM)构建小麦中不同生长阶段米象的分类识别模型,采集未感染小麦和感染米象小麦的近红外光谱数据,选择 SNV+De-trending 的组合对原始光谱数据进行预处理,使用主成分分析(PCA)方法对光谱数据进行降维特征提取,利用 ELM 和支持向量机(SVM)建立分类识别模型。结果表明:ELM模型训练时间仅需 0.062 5 s,总体分类准确率为

3、90%,0、6、24 和 27 d 的识别率为 100%,1020 d 的幼虫期识别率偏低,20 d 时识别率最低,为 65%;SVM 模型运行时间为 3.38 s,分类准确率为 85.42%,ELM 模型较 SVM 模型的运行时间和分类准确率都有所提高。因此,ELM 分类识别模型能够快速准确地判断小麦有无米象,以及分类识别小麦中不同生长发育阶段的米象。关键词:近红外;隐蔽性害虫;极限学习机;分类;米象;早期诊断中图分类号:TS210文献标志码:A文章编号:1673-2383(2023)01-0104-08DOI:10.16433/j.1673-2383.2023.01.014Classifi

4、cation and recognition of Sitophilus oryzae in different growth stages of wheat based on near-infrared spectroscopy and ELMLU Yujie1,2,WANG Wenjing1,ZHANG Jundong1,WANG Zhengyan1,LU Shaohua11.College of Food Science and Engineering,Henan University of Technology,Zhengzhou 450001,China2.School of Gra

5、in Science and Technology,Jiangsu University of Science and Technology,Zhenjiang 212100,ChinaAbstract:Early diagnosis and detection of hidden pests in grain could not only reduce the post-production losses of grain caused by pest feeding,but also reduce the use of chemicals,which are important for m

6、ain-taining grain quality and reducing environmental pollution.In this paper,a classification and identification model of Sitophilus oryzae(S.oryzae)in wheat at different growth stages was constructed based on near-infrared spectroscopy and extreme learning machine(ELM),and the near-infrared spectra

7、l data of uninfect-ed wheat and infected S.oryzae wheat were collected.The images of S.oryzae in different growth and development stages were obtained by X-ray imaging technology,and the development period of S.oryzae was obtained through the images(egg stage at 0-9 d,larval stage at 10-20 d,pupa st

8、age at 21-26 d,and adult stage at 27-30 d),the wheat with full grains was selected and collected by near infrared spectroscopy to obtain the spectral data of uninfected samples,and then wheat was infested with S.oryzae adults.After 48 hours,the S.oryzae adults were taken out,and the samples were col

9、lected by near-infrared spectrum on 第 44 卷第 1 期鲁玉杰,等:基于近红外光谱技术及 ELM 对小麦中不同生长阶段米象的分类识别6,10,14,17,20,24,and 27 day of the experiment to obtain uninfected wheat and near-infrared spectral data of wheat infected with S.oryzae wheat.When modeling using the original spectral data,the classifica-tion accur

10、acy of the ELM model was 78.75%.After preprocessing,the classification accuracy of the ELM model reached 85%,and then the principal component analysis(PCA)method was used to perform di-mension reduction feature extraction on the spectral data.When the target dimension was 120 dimensions,the accuracy

11、 of the ELM classification and recognition model was 90%,the classification recognition rate increased by 12.5%.The experimental results showed that the appropriate preprocessing method and PCA dimensionality reduction feature extraction could effectively improve the classification accuracy of ELM m

12、odel,and the training time was only 0.062 5 s,the overall classification accuracy reached 90%,the rec-ognition rates were 100%on 0,6,24,and 27 days,and lower on 10-20 days of larval stage,and the rec-ognition rate was the lowest at 20 days,which was 65%.Compared with the performance of ELM and SVM i

13、n this experiment,the training time of SVM model was 3.38 s,the overall classification accuracy reached 85.42%,on 0,10,17,and 24 days,the recognition rate was 90%,at 6 days,the recognition rate was 80%,at 14 days,the recognition rate was 55%,and at 20 and 27 days,the recognition rate was 85%.The res

14、ults showed that the classification effect of ELM model was better than that of SVM model.There-fore,ELM classification and recognition model could quickly and accurately determine insect-free and insect-containing wheat and classify the S.oryzae at different growth and development stages.The classi

15、fi-cation and identification of S.oryzae has potential practical value for early detection of hidden pests in grain.The data of this study comes from laboratory conditions.In the future,more data can be collected from actual production to strengthen the classification model and increase the accuracy

16、 of the model.The optimized ELM was used to further improve the classification and recognition efficiency and accuracy of the model.On the basis of this paper,a classification and identification model of a variety of hidden pests was established to provide a reference for the intelligent detection of pests in the construction of intelligent grain depots.Key words:NIRS;hidden pests;ELM;classification;Sitophilus oryzae;early diagnosis我国是世界上最大的粮食生产国,同时也是最大的粮食储藏国,每年的粮食储存量高达年产量的一半以上1-2,因此,做好粮食的安全储备工作

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2