ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:2.22MB ,
资源ID:23204      下载积分:14 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/23204.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年福建省莆田第四中学高三第二次诊断性检测数学试卷(含解析).doc)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年福建省莆田第四中学高三第二次诊断性检测数学试卷(含解析).doc

1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知圆锥的高为3,底面半径为,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积与圆锥的体积的比值为( )ABCD2若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和

2、为( )A85B84C57D563已知数列满足:)若正整数使得成立,则( )A16B17C18D194下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为( )ABCD5已知集合,将集合的所有元素从小到大一次排列构成一个新数列,则( )A1194B1695C311D10956如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的

3、是( ) A2019年12月份,全国居民消费价格环比持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格7复数满足 (为虚数单位),则的值是()ABCD8设为自然对数的底数,函数,若,则( )ABCD9复数,若复数在复平面内对应的点关于虚轴对称,则等于( )ABCD10若,则的虚部是A3BCD11过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )ABCD12已知实数满足约束条件,则的最小值为( )A-5B2C7D11二、填

4、空题:本题共4小题,每小题5分,共20分。13已知某几何体的三视图如图所示,则该几何体外接球的表面积是_.14展开式中的系数为_.(用数字做答)15已知在ABC中,(2sin32,2cos32),(cos77,cos13),则_,ABC的面积为_16设满足约束条件,则目标函数的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中(1)求函数的单调区间;若满足,且求证: (2)函数若对任意,都有,求的最大值18(12分)若数列满足:对于任意,均为数列中的项,则称数列为“数列”(1)若数列的前项和,试判断数列是否为“数列”?说明理由;(2)若公差为

5、的等差数列为“数列”,求的取值范围;(3)若数列为“数列”,且对于任意,均有,求数列的通项公式19(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.20(12分)在中,内角的对边分别是,已知.(1)求角的值;(2)若,求的面积21(12分)如图所示,在四棱锥中,点分别为的中点.(1)证明:面;(2)若,且,面面,求二面角的余弦值.22(10分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

6、1、B【答案解析】计算求半径为,再计算球体积和圆锥体积,计算得到答案.【题目详解】如图所示:设球半径为,则,解得.故求体积为:,圆锥的体积:,故.故选:.【答案点睛】本题考查了圆锥,球体积,圆锥的外接球问题,意在考查学生的计算能力和空间想象能力.2、A【答案解析】先求,再确定展开式中的有理项,最后求系数之和.【题目详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【答案点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.3、B【答案解析】计算,故,解得答案.【题目详解】当时,即,且.故,故.故选:.【答案点睛】本题考查了数

7、列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.4、C【答案解析】将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【题目详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角, ,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【答案点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.5、D【答案解析】确定中前35项里两个数列

8、中的项数,数列中第35项为70,这时可通过比较确定中有多少项可以插入这35项里面即可得,然后可求和【题目详解】时,所以数列的前35项和中,有三项3,9,27,有32项,所以故选:D【答案点睛】本题考查数列分组求和,掌握等差数列和等比数列前项和公式是解题基础解题关键是确定数列的前35项中有多少项是中的,又有多少项是中的6、D【答案解析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【题目详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以

9、D正确.故选:D【答案点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.7、C【答案解析】直接利用复数的除法的运算法则化简求解即可【题目详解】由得:本题正确选项:【答案点睛】本题考查复数的除法的运算法则的应用,考查计算能力8、D【答案解析】利用与的关系,求得的值.【题目详解】依题意,所以故选:D【答案点睛】本小题主要考查函数值的计算,属于基础题.9、A【答案解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【题目详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【答案点睛】本题主要考查复数的基本运算和几何意义,属于基础题.1

10、0、B【答案解析】因为,所以的虚部是.故选B11、C【答案解析】作,;,由题意,由二倍角公式即得解.【题目详解】由题意,准线:,作,;,设,故,.故选:C【答案点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.12、A【答案解析】根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【题目详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【答案点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案

11、解析】先由三视图在长方体中将其还原成直观图,再利用球的直径是长方体体对角线即可解决.【题目详解】由三视图知该几何体是一个三棱锥,如图所示长方体对角线长为,所以三棱锥外接球半径为,故所求外接球的表面积.故答案为:.【答案点睛】本题考查几何体三视图以及几何体外接球的表面积,考查学生空间想象能力以及基本计算能力,是一道基础题.14、210【答案解析】转化,只有中含有,即得解.【题目详解】只有中含有,其中的系数为故答案为:210【答案点睛】本题考查了二项式系数的求解,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.15、 【答案解析】根据向量数量积的坐标表示结合两角差的正弦公式的逆用即可得解

12、;结合求出,根据面积公式即可得解.【题目详解】2(sin32cos77cos32sin77),故答案为:【答案点睛】此题考查平面向量与三角函数解三角形综合应用,涉及平面向量数量积的坐标表示,三角恒等变换,根据三角形面积公式求解三角形面积,综合性强.16、【答案解析】根据满足约束条件,画出可行域,将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点,此时,目标函数 取得最小值.【题目详解】由满足约束条件,画出可行域如图所示阴影部分:将目标函数,转化为,平移直线,找到直线在轴上截距最小时的点 此时,目标函数 取得最小值,最小值为故答案为:-1【答案点睛】本题主要考查线性规划求最值,还考查了数

13、形结合的思想方法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递增区间,单调递减区间;详见解析;(2).【答案解析】(1)求导可得,再分别求解与的解集,结合定义域分析函数的单调区间即可.根据(1)中的结论,求出的表达式,再分与两种情况,结合函数的单调性分析的范围即可.(2)求导分析的单调性,再结合单调性,设去绝对值化简可得,再构造函数,根据函数的单调性与恒成立问题可知,再换元表达求解最大值即可.【题目详解】解:,由可得或,由可得,故函数的单调递增区间,单调递减区间;,或,若,因为,故,由知在上单调递增,若由可得x1,因为,所以,由在上单调递增,综上

14、时,在上单调递减,不妨设由(1)在上单调递减,由,可得,所以, 令,可得单调递减,所以在上恒成立,即在上恒成立,即,所以, ,所以的最大值【答案点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了利用导数求解函数不等式以及构造函数分析函数的最值解决恒成立的问题.需要根据题意结合定义域与单调性分析函数的取值范围与最值等.属于难题.18、(1)不是,见解析(2)(3)【答案解析】(1)利用递推关系求出数列的通项公式,进一步验证时,是否为数列中的项,即可得答案;(2)由题意得,再对公差进行分类讨论,即可得答案;(3)由题意得数列为等差数列,设数列的公差为,再根据不等式得到公差的值,即可得答案;【题目详解】(1)当时,又,所以所以

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2