ImageVerifierCode 换一换
格式:PDF , 页数:449 ,大小:22.14MB ,
资源ID:2363641      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2363641.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(游戏和图形学的3D数学入门教程(3D.Math.Primer.pdf)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

游戏和图形学的3D数学入门教程(3D.Math.Primer.pdf

1、TEAMFLY Team-Fly 3D Math Primer forGraphics and GameDevelopmentFletcher Dunnand Ian ParberryWordware Publishing,Inc.Library of Congress Cataloging-in-Publication DataDunn,Fletcher.3D math primer for graphics and game development/by Fletcher Dunn and Ian Parberry.p.cm.ISBN 1-55622-911-91.Computer gra

2、phics.2.Computer games-Programming.3.Computer science-Mathematics.I.Parberry,Ian.II.Title.T385.D8752002006.6-dc212002004615CIP 2002,Wordware Publishing,Inc.All Rights Reserved2320 Los Rios BoulevardPlano,Texas 75074No part of this book may be reproduced in any form or byany means without permission

3、in writing fromWordware Publishing,Inc.Printed in the United States of AmericaISBN 1-55622-911-910 9 8 7 6 5 4 3 2 10205Product names mentioned are used for identification purposes only and may be trademarks of their respective companies.All inquiries for volume purchases of this book should be addr

4、essed to Wordware Publishing,Inc.,at the aboveaddress.Telephone inquiries may be made by calling:(972)423-0090ContentsAcknowledgments.xiChapter 1Introduction.11.1 What is 3D Math?.11.2 Why You Should Read This Book.11.3 What You Should Know Before Reading This Book.31.4 Overview.3Chapter 2The Cartes

5、ian Coordinate System.52.1 1D Mathematics.62.2 2D Cartesian Mathematics.92.2.1 An Example:The Hypothetical City of Cartesia.92.2.2 Arbitrary 2D Coordinate Spaces.102.2.3 Specifying Locations in 2D Using Cartesian Coordinates.132.3 From 2D to 3D.142.3.1 Extra Dimension,Extra Axis.152.3.2 Specifying L

6、ocations in 3D.152.3.3 Left-handed vs.Right-handed Coordinate Spaces.162.3.4 Some Important Conventions Used in This Book.192.4 Exercises.20Chapter 3Multiple Coordinate Spaces.233.1 Why Multiple Coordinate Spaces?.243.2 Some Useful Coordinate Spaces.253.2.1 World Space.253.2.2 Object Space.263.2.3 C

7、amera Space.273.2.4 Inertial Space.283.3 Nested Coordinate Spaces.303.4 Specifying Coordinate Spaces.313.5 Coordinate Space Transformations.313.6 Exercises.34Chapter 4Vectors.354.1 Vector A Mathematical Definition.364.1.1 Vectors vs.Scalars.364.1.2 Vector Dimension.364.1.3 Notation.364.2 Vector A Ge

8、ometric Definition.37iii4.2.1 What Does a Vector Look Like?.374.2.2 Position vs.Displacement.384.2.3 Specifying Vectors.384.2.4 Vectors as a Sequence of Displacements.394.3 Vectors vs.Points.404.3.1 Relative Position.414.3.2 The Relationship Between Points and Vectors.414.4 Exercises.42Chapter 5Oper

9、ations on Vectors.455.1 Linear Algebra vs.What We Need.465.2 Typeface Conventions.465.3 The Zero Vector.475.4 Negating a Vector.485.4.1 Official Linear Algebra Rules.485.4.2 Geometric Interpretation.485.5 Vector Magnitude(Length).495.5.1 Official Linear Algebra Rules.495.5.2 Geometric Interpretation

10、.505.6 Vector Multiplication by a Scalar.515.6.1 Official Linear Algebra Rules.515.6.2 Geometric Interpretation.525.7 Normalized Vectors.535.7.1 Official Linear Algebra Rules.535.7.2 Geometric Interpretation.535.8 Vector Addition and Subtraction.545.8.1 Official Linear Algebra Rules.545.8.2 Geometri

11、c Interpretation.555.8.3 Vector from One Point to Another.575.9 The Distance Formula.575.10 Vector Dot Product.585.10.1 Official Linear Algebra Rules.585.10.2 Geometric Interpretation.595.10.3 Projecting One Vector onto Another.615.11 Vector Cross Product.625.11.1 Official Linear Algebra Rules.625.1

12、1.2 Geometric Interpretation.625.12 Linear Algebra Identities.655.13 Exercises.67Chapter 6A Simple 3D Vector Class.696.1 Class Interface.696.2 Class Vector3 Definition.706.3 Design Decisions.736.3.1 Floats vs.Doubles.736.3.2 Operator Overloading.73ivContents6.3.3 Provide Only the Most Important Oper

13、ations.746.3.4 Dont Overload Too Many Operators.746.3.5 Use Const Member Functions.756.3.6 Use Const&Arguments.756.3.7 Member vs.Nonmember Functions.756.3.8 No Default Initialization.776.3.9 Dont Use Virtual Functions.776.3.10 Dont Use Information Hiding.776.3.11 Global Zero Vector Constant.786.3.12

14、 No“point3”Class.786.3.13 A Word on Optimization.78Chapter 7Introduction to Matrices.837.1 Matrix A Mathematical Definition.837.1.1 Matrix Dimensions and Notation.837.1.2 Square Matrices.847.1.3 Vectors as Matrices.857.1.4 Transposition.857.1.5 Multiplying a Matrix with a Scalar.867.1.6 Multiplying

15、Two Matrices.867.1.7 Multiplying a Vector and a Matrix.897.1.8 Row vs.Column Vectors.907.2 Matrix A Geometric Interpretation.917.2.1 How Does a Matrix Transform Vectors?.927.2.2 What Does a Matrix Look Like?.937.2.3 Summary.977.3 Exercises.98Chapter 8Matrices and Linear Transformations.1018.1 Transf

16、orming an Object vs.Transforming the Coordinate Space.1028.2 Rotation.1058.2.1 Rotation in 2D.1058.2.2 3D Rotation about Cardinal Axes.1068.2.3 3D Rotation about an Arbitrary Axis.1098.3 Scale.1128.3.1 Scaling along Cardinal Axes.1128.3.2 Scale in an Arbitrary Direction.1138.4 Orthographic Projection.1158.4.1 Projecting onto a Cardinal Axis or Plane.1168.4.2 Projecting onto an Arbitrary Line or Plane.1178.5 Reflection.1178.6 Shearing.1188.7 Combining Transformations.1198.8 Classes of Transformat

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2