1、第 15 卷 第 4 期 精 密 成 形 工 程 2023 年 4 月 JOURNAL OF NETSHAPE FORMING ENGINEERING 197 收稿日期:20221211 Received:2022-12-11 基金项目:山西省自然科学基金资助项目(201801D121106)Fund:Natural Science Foundation of Shanxi(201801D121106)作者简介:李碧聪(1996),男,硕士生,主要研究方向为铝合金精密塑性成形技术。Biography:LI Bi-cong(1996-),Male,Postgraduate,Research fo
2、cus:precision plastic forming technology of aluminum alloy.通讯作者:李国俊(1969),男,硕士,教授级高级工程师,主要研究方向为铝合金精密塑性成形技术。Corresponding author:LI Guo-jun(1969-),Male,Master,Professor-level senior engineer,Research focus:precision plastic forming technology of aluminum alloy.引文格式:李碧聪,李国俊,张治民,等.基于响应面法的大型锥筒件内凸缘缩口成形工艺
3、参数优化J.精密成形工程,2023,15(4):197-204.LI Bi-cong,LI Guo-jun,ZHANG Zhi-min,et al.Optimization of Necking Forming Process Parameters for Inner Flange of Large Conical Cylinder Part Based on Response Surface MethodJ.Journal of Netshape Forming Engineering,2023,15(4):197-204.基于响应面法的大型锥筒件内凸缘缩口 成形工艺参数优化 李碧聪1,李国
4、俊1,张治民1,郭为民2(1.中北大学 材料科学与工程学院,太原 030051;2.晋西工业集团有限责任公司,太原 030027)摘要:目的目的 探究大型锥筒件内凸缘缩口成形的最佳工艺参数。方法方法 首先,根据内凸缘缩口成形的工艺原理,使用三维软件构建内凸缘缩口成形的仿真模型,并用 Deform 进行仿真成形。在此基础上,以缩口件高度和成形载荷作为内凸缘成形质量的判断依据,基于响应面法得到关于缩口件高度和成形载荷的回归预测模型。分析不同的摩擦因数、挤压速度和凹模锥度对内凸缘成形质量的影响,优化得到最佳的成形工艺参数,最后进行物理试验验证。结果结果 通过响应面法拟合得到了缩口件高度和成形载荷关于
5、 3 因素的多元非线性模型,模型通过 F 检验得出的显著性概率 P 值均小于 0.000 1,失拟项值均大于 0.05,且模型预测值与试验模拟值的关系接近直线,充分说明了该数学模型的合理性。当摩擦因数为 0.3、挤压速度为 3 mm/s、凹模锥度为 9时,毛坯的成形载荷最小,为 90 kN,缩口件高度最低,为 1 350 mm,与模型预测相比,误差均小于 10%。结论结论 优化后的工艺参数使内凸缘成形质量高、表面光滑无缺陷、成形载荷小,为大型锥筒的内凸缘成形工艺提供了参考。关键词:内凸缘;缩口成形;响应面法;缩口件高度;成形载荷;工艺优化 DOI:10.3969/j.issn.1674-645
6、7.2023.04.021 中图分类号:TG312 文献标识码:A 文章编号:1674-6457(2023)04-0197-08 Optimization of Necking Forming Process Parameters for Inner Flange of Large Conical Cylinder Part Based on Response Surface Method LI Bi-cong1,LI Guo-jun1,ZHANG Zhi-min1,GUO Wei-min2 (1.School of Materials Science and Engineering,Nort
7、h University of China,Taiyuan 030051,China;2.Jinxi Industry Group Co.,Ltd.,Taiyuan 030027,China)ABSTRACT:The work aims to explore the best process parameters for the necking forming of the inner flange of the large conical cylinder part.Firstly,according to the process principle of the inner flange
8、necking forming,the simulation model of the 198 精 密 成 形 工 程 2023 年 4 月 inner flange necking forming was built by 3D software,and the simulation forming was performed with Deform.On this basis,the height of the necked part and the forming load were used as the basis for judging the forming quality of
9、 the inner flange,and the regression prediction model about the height of the necked part and the forming load was obtained based on the response surface method.The effects of the different friction factors,extrusion speed and concave die taper on the forming quality of the inner flange were analyze
10、d for optimization to get the best forming process parameters,and finally physical tests were con-ducted for verification.The response surface method was used to fit the multivariate nonlinear model of necked part height and forming load with respect to three factors.The probability of significance
11、P-values obtained when the model passed through the F-test were all less than 0.000 1 and the mismatched term values were all greater than 0.05.In addition,the relationship between the values predicted by the model and the values simulated by the experiment was close to a straight line,which fully i
12、llustrated the reasonableness of the mathematical model.When the friction factor,extrusion speed and die taper were 0.3,3 mm/s and 9,respectively,the forming load of the workpiece reached a minimum of 90 kN and the height of the necked part was a minimum of 1 350 mm.Compared with the predictions by
13、the model,the errors were less than 10%.The optimized process parameters contribute to high quality inner flange forming,smooth surface without defects and low forming load,which provides a refer-ence for the inner flange forming process of large conical cylinders.KEY WORDS:inner flange;necking form
14、ing;response surface method;height of necked part;forming load;process opti-mization 近年来,大型锥筒件在航空和航天中的应用越来越广泛,特别是薄壁锥筒带内凸缘连接构件,而此类零件结构复杂,对精度和性能要求较高,目前国内对于该特性零件的生产主要采用切削加工、旋压技术1-4,但机械加工使原材料浪费严重、性能较低;旋压技术变形不均匀,存在压尾、折叠、开裂等缺陷。因此,寻求节材、高效的内凸缘成形方法已经成为亟需解决的难题。缩口工艺是一种应用广泛的塑性加工技术,具有变形均匀、缺陷较少的优点,得到了国内外学者的广泛认可5-
15、7。孙浩博等8针对大型锥形筒件传统制造方法成形性能较差的缺点,提出了一种大型管坯分区冷却缩口、多次扩口混合的热模压成形方法。张稳等9利用管材的拉伸试验和 ABAQUS 软件研究了管材缩口的应力应变特征,得到了 5A06 管的极限缩口系数。李晓冬等10采用正交试验研究了管坯厚度、管坯直径等参数对铝合金管缩口增厚过程的影响,得到了缩口增厚的成形规律。张国智11研究了缩口件过渡段的变形机理,用能量法和矢量分析法建立了缩口件不同过渡形式克服总能量的理论模型,为精密缩口工艺提供了依据。刘泽等12针对“肚大口小”的筒形件,提出了一种分瓣式内外支撑缩口成形方法,解决了传统工艺金属流线不完整的缺陷。Lu13根
16、据 LevyMises 方程,提出了一种近似方法,用于计算球形凹模缩口预成形、缩口比和加载速率。上述成果均证明了缩口工艺的可行性和适用广泛性,但对于大型锥筒件内凸缘缩口成形的研究甚少。文中提出采用缩口工艺成形内凸缘,在数值模拟的基础上应用响应曲面法得到最佳的工艺参数,用物理试验验证该工艺的可靠性,为内凸缘的成形提供技术支持。1 目标零件的成形工艺介绍 1.1 零件特征 带内凸缘特征的大型锥筒件如图 1 所示,筒件为旋转体,总高 1 300 mm,外径 448 mm,内凸缘直径 360 mm,凸缘高度 288 mm。图 1 端部带内凸缘特征的锥筒形件 Fig.1 Conical cylinder part with inner flange feature at the end:a)2D drawing;b)3D drawing 1.2 成形工艺方案设计 由图 1 可知,该零件结构可分为上、中、下 3 部分,下面部分为锥形,中间部分为直壁段,上面部分为带内凸缘的直壁筒形,针对该类结构件性能高、一致性好的要求,决定采用一体化的塑性成形方法14-15。根据零件的特点,提出如图 2 所示的工艺