ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:1.72MB ,
资源ID:2468633      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2468633.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高比能钠离子电池预钠化技术研究进展_徐铭礼.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

高比能钠离子电池预钠化技术研究进展_徐铭礼.pdf

1、物 理 化 学 学 报 Acta Phys.-Chim.Sin.2023,39(3),2210043(1 of 16)Received:October 31,2022;Revised:November 27,2022;Accepted:December 2,2022;Published online:December 9,2022.*Corresponding author.Email:;Tel.:+86-27-68754526.The project was supported by the National Natural Science Foundation of China(22075

2、216,22279093),the Natural Science Foundation of Hubei Province,China(2022CFB096),and the Fundamental Research Funds for the Central Universities,China(2042021kf0194).国家自然科学基金(22075216,22279093),湖北省自然科学基金(2022CFB096),中央高校基本科研基金(2042021kf0194)资助项目 Editorial office of Acta Physico-Chimica Sinica Review

3、 doi:10.3866/PKU.WHXB202210043 Research Progress on Presodiation Strategies for High Energy Sodium-Ion Batteries Mingli Xu,Mengchuang Liu,Zezhou Yang,Chen Wu,Jiangfeng Qian*Hubei Key Laboratory of Electrochemical Power Sources,College of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072

4、,China.Abstract:Lithium-ion batteries(LIBs)have attracted considerable attention owing to their high energy density and long cycle life.However,lithium resources have become scarcer with the rapid development of electric vehicles and smart grid technologies.Considering the inexpensive and abundant s

5、upply of sodium,sodium-ion batteries(SIBs)are expected to replace LIBs for large-scale energy storage systems.However,the development of high-energy SIBs is usually limited by the poor initial Coulombic efficiency(ICE)of the anode materials,although a series of advanced sodium storage electrode mate

6、rials have been reported.This is because active sodium ions are all provided by the cathode material in a full cell.The low ICE of the anode indicates that numerous active sodium ions are irreversibly consumed during the first cycle,reducing the reversible capacity and shortening the cycle life of t

7、he full cell.The significant loss of active sodium ions is attributed to the formation of a solid electrolyte interface(SEI)on the anode side and irreversible sodium capture by defect sites and surface functional groups on the anode material.Consequently,excessive cathode material is required in the

8、 full cell,which significantly reduces the utilization rate of the cathode material and the energy density of the full cell.Furthermore,many reported cathode materials,such as Fe2S,are sodium-deficient and cannot be directly matched with anodes,limiting the selection of electrode materials.Presodiat

9、ion technology is considered the most direct and effective method to solve the state-matching problem of cathode and anode materials by compensating for active sodium-ion loss and increasing the energy density,which are crucial for the commercial application of SIBs.The aim is to eliminate the irrev

10、ersible capacity loss during the first cycle by incorporating additional active sodium ions to the electrode material in advance.This review comprehensively summarizes the latest research progress on various presodiation strategies,including short circuit with sodium metal,electrochemical presodiati

11、on,sodium metal addition,chemical presodiation,and cathode sacrificial additives.The advantages and challenges of existing methods are thoroughly analyzed and discussed from the perspective of their reaction mechanism,safety,compatibility,efficiency,and scalability.Emphasis is placed on the state-of

12、-the-art advancements in chemical presodiation and cathode sacrificial additives,which are considered the two most promising methods for commercial applications.The unresolved scientific problems and technical difficulties are further discussed from a practical perspective.This review may provide gu

13、idance for the investigation of advanced presodiation technology and promote further development of high-energy SIBs.Key Words:Sodium-ion battery;Presodiation strategy;Initial coulombic efficiency;Chemical presodiation;Cathode sacrificial additive 物理化学学报 Acta Phys.-Chim.Sin.2022,38(3),2210043(2 of 1

14、6)高比能钠离子电池预钠化技术研究进展高比能钠离子电池预钠化技术研究进展 徐铭礼,刘猛闯,杨泽洲,吴晨,钱江锋*湖北省化学电源材料与技术重点实验室,武汉大学化学与分子科学学院,武汉 430072 摘要摘要:钠离子电池有望取代锂离子电池实现大规模储能应用。然而,储钠负极材料具有较低的初始库伦效率,制约了高比能钠离子电池的开发。预钠化技术被认为是补偿负极活性钠损失、提升电池能量密度的最直接有效的方法,对于钠离子电池的商业化应用具有重要意义。本文全面总结近年来预钠化技术的最新研究进展,包括短接法预钠化、电化学预钠化、钠金属物理预钠化、化学预钠化和正极补钠添加剂等,并从反应原理、安全性、可操作性、处理

15、效率和可放大性等角度分析讨论现有各技术方案的优势及面临的挑战;着重介绍化学预钠化和正极补钠添加剂,这两类最具应用前景的预钠化技术的最新成果,进而从实用化角度深入探讨仍待解决的科学问题和技术难点。本文可为预钠化技术的进一步优化和高比能钠离子电池的开发提供思路。关键词关键词:钠离子电池;预钠化技术;初始库伦效率;化学补钠法;正极补钠添加剂 中图分类号:中图分类号:O646 1 前言前言 基于能源紧缺的现状以及“双碳”目标的要求,发展先进高效的储能技术势在必行1。在众多储能方式中,锂离子电池(LIB)因具有能量密度高和循环寿命长等优点而备受关注2,3。然而,随着电动汽车及智能电网技术的快速普及,锂资

16、源短缺问题成为制约其大规模应用的最大障碍。与传统锂离子电池相比,钠离子电池(SIB)因为极具竞争力的成本优势和可持续的资源供应,被看作是锂离子电池的理想替代品。经过近十年的发展,钠离子电池电极材料的研究取得了巨大进步4,正极材料如层状氧化物、聚阴离子型化合物5和普鲁士蓝及其类似物6,7等;负极材料如转换类材料、嵌入型材料8和合金材料9等,都表现出了较高的储钠比容量和优异的循环稳定性10。然而,负极材料初始库伦效率(ICE)低的共性问题始终制约着钠离子电池能量密度的进一步提升11,12。在实际电池体系中,电池循环过程中所需要的钠离子全部由正极材料提供。负极的ICE过低意味着大量的活性钠离子在首圈充放电过程中被不可逆地消耗,这使得电池的可逆容量下降及循环寿命缩短。另外,许多报道的正极材料自身处于贫钠态,这使得电池的活性钠含量更加捉襟见肘。一般来说,造成活性钠损失的原因主要包括两方面:其一,电解液在负极表面还原分解,形成固态电解质界面膜(SEI)并伴随着活性钠的不断消耗;其二,材料本体的缺陷位点或官能团与钠离子发生不可逆的嵌钠反应,导致首圈放电的容量损失。为了弥补活性钠损失,全电池中往往需要

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2