ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:1,004.74KB ,
资源ID:2518409      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2518409.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响_胡政.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响_胡政.pdf

1、第 卷,第期 光谱学与光谱分析 ,年月 ,降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响胡政,张艳,贵州大学大数据与信息工程学院,贵州 贵阳 贵阳学院农产品无损检测工程研究中心,贵州 贵阳 摘要番茄早疫病感染性强、破坏性大,潜育期症前特征的检测识别是番茄早疫病监测预警和科学防治的关键。在实验室以离体番茄叶片作为研究对象,利用高光谱图像监测番茄叶片早疫病的病程演变情况,结合可见光图像和光谱特征进行数据分析。实验发现,番茄叶片感染早疫病后其近红外光谱平均值和红边反射率随着时间不断降低,且在接种 时已出现潜育期病症信息。选择接种 的光谱数据作为番茄早疫病潜育期的建模数据,分别利用了主成分()变换

2、、多元散射校正()对建模数据进行光谱降维或降噪处理,进而建立梯度提升决策树()和支持向量机()识别模型,并导入数据进行训练识别。讨论了 和 的预处理方法对梯度提升决策树()和支持向量机()模型识别效果的影响;进一步讨论常见核函数对 识别模型的影响,优选出预处理方法和识别模型的组合算法。结果发现,、(高斯核)、(线性核)、(多项式核)这几类组合算法准确率均为 以上,能很好的实现番茄早疫病潜育期的光谱识别;其中 的识别召回率和准确率最好,而 (高斯核)识别效率最高。研究表明,通过降噪处理后的番茄早疫病潜育期高光谱数据减少了噪声、更加符合真实的分布、具有较大的可信数据量,配合简单的识别模型会导致识别

3、能力不足,而配合复杂的识别模型可达到一个较可靠的测试结果;通过降维算法能使番茄早疫病潜育期高光谱数据的维度降低、数据量减少;降维后的特征能够表达出病变信息,配合简单识别模型时识别效果好,而配合过于复杂的识别模型会导致识别模型的过拟合。关键词番茄早疫病;潜育期;高光谱成像;预处理;支持向量;梯度提升决策树中图分类号:文献标识码:()收稿日期:,修订日期:基金项目:国家自然科学基金项目()资助作者简介:胡政,年生,贵州大学大数据与信息工程学院硕士研究生 :通讯作者 :引言番茄植株适应力强、易于种植,是全世界产量最高的 种作物之一。在番茄的生长过程中容易遭到早疫病、灰霉病、晚疫病、叶霉病等病害的胁迫

4、,其中番茄早疫病是危害最严重的病害,该病主要在开花期发病,结果期发病严重,严重影响了产量和品质。潜育期症前特征的检测识别是番茄早疫病监测预警和科学防治的关键。通常对番茄早疫病的识别是人眼直接观察或利用显微技术进行病原鉴定。传统识别方法经验性强、灵敏度低、费时费力,难以实现快速灵敏检测。近年来,机器视觉、高光谱成像、红外热成像等成像技术以其无损、快速的优点越来越多的应用于植物病害检测 。利用成像技术对番茄早疫病潜育期进行快速无损的检测,具有重要的科学意义和广阔的应用前景。鉴于作物病害潜育期症前特征的隐晦性以及高光谱图像数据特征的多维性,对高光谱图像进行降噪或降维的预处理对作物病害潜育期症前特征的

5、识别尤为重要。为此,以感染早疫病的番茄叶片作为检测对象,研究降维降噪预处理对番茄早疫病潜育期的高光谱图像识别效果的影响。实验部分 方案设计选取同一批番茄幼苗进行培育,待幼苗生长至开花期,选择离体叶片以刮伤涂抹菌液的方式涂抹早疫病菌(),利用高光谱成像系统以相同时间间隔()采集感染叶片和未感染叶片的高光谱图像,利用温度湿度计监测实验温度和湿度条件,确保实验室条件相对稳定。通过连续动态监测接种后的番茄早疫病的病程演变情况,结合可见光图像确定了本实验条件下番茄潜育期的时间范围(即接种病害直至出现人眼可明显识别病症的时间)为;再从潜育期图像中选出红边和平均光谱反射率变化明显的时间节点(),将该时间节点

6、拍摄得到的高光谱图像作为识别模型的建模数据,实验流程如图所示。其中,在选择感兴趣区域时,因为潜育期病害特征隐晦、信息微弱,所以感兴趣区选择不宜过大,否则潜育期信息被大面积数据均衡化了,本实验在接种点附近选择 个像素点作为感兴趣区。鉴于实验可能存在接种失败的情况,根据动态监测接种感染情况进行分类标注,把其中最终出现病斑的样本图像标注为,而最终未出现病斑的样本图像标注为,随机打乱后按:比例划分识别模型的训练集和测试集,识别流程如图所示。从图所示,在确定高光谱数据的训练集和测试集后,对数据集分别进行 降维处理和 降噪处理,再建立 识别模型和 识别模型。利用准确率、召回率和识别时间作为识别模型的评价指

7、标,分别比较 降维处理和 降噪处理对 模型和 模型的识别结果,并讨论不同核函数对支持向量机识别效果的影响,以期提升识别效果、优化识别模型,从而优选出预处理方法和识别模型的组合算法。图番茄早疫病高光谱数据集准备流程 图番茄早疫病潜育期光谱数据处理与识别流程 第期胡政等:降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响 高光谱图像的采集和区域校正高光谱成像是利用光源照射放置在电控移动平台上的样品,并通过光谱相机捕获样品的反射光,伴随着电控移动平台带动样品运行,最终获得具有图像信息和光谱信息的三维数据立方。采集番茄叶片高光谱图像时,为保证图像清晰不失真,尽量减少干扰,需在采集前打开系统电源预热两分

8、钟左右并调整系统采集参数,经预实验确定曝光时间约为 、采集速度为、采集距离为 ,实验时将样本放置在电控平移台上,利用光谱仪对检测样本进行采集。高光谱成像系统采集的光谱主要取决于光源的光谱、强度、光谱仪的衍射率和被测物的反射率等,为避免拍摄环境的影响,可利用式()对采集的原始数据进行校正()式()中,为原始样品的反射率,为背景的反射率,为白板的反射率。数据分析与处理 利用可见光图像动态监测确定潜育期当番茄叶片遭到早疫病胁迫时,其叶肉组织遭到破坏、叶绿素和水分丢失,从而引起叶片表面产生枯萎和变黄等现象。病害潜育期是指从病菌侵入寄主后建立寄生关系起,到出现明显的病变特征的这一时期。本实验利用可见光图

9、像和感兴趣区灰度直方图为参照,结合病症演变过程,从而判定番茄早疫病潜育期的时间节点。图是番茄叶片感染早疫病后不同时间节点的可见光图像和感兴趣区域灰度直方图的情况。图番茄叶片早疫病可见光图像特征的演变 可见光图像可以记录人眼观察的效果,灰度直方图能客观反映感兴趣区灰度图中的像素的统计分布,揭示早期病症的灰度特点。在本实验中,番茄叶片接种后,直到 才从可见光图像和感兴趣区域灰度直方图看到叶片表面出现病变特征,因此接种后 都属于番茄早疫病的潜育期。值得注意的是,接种 后的叶片,发现叶片的中心接种区域出现黑色病斑,周围伴随着离散的黑色小点;在接种 后可观察出病斑沿着叶脉方向进行扩散,黑色小点向周围呈现

10、圆形扩张;在接种 后,感兴趣区域灰度直方图显示,低亮度区(亮度范围为)的像素逐渐增多,最高亮度值的像素数持续显著减少,最大值从 降低到 到 。利用感兴趣区的平均光谱确定潜育期建模数据通常人眼只看到 波段的可见光,该波段可直接反映出作物表面的可见光特征如枯黄、损伤等。本实验用的高光谱仪的工作波段为 ,其中 是人眼无法直接观测到的波段,该波段能够反映出作物更深层次的生理特征,如作物的蛋白质、水分含量、叶肉细胞的变化等。为动态监测感染番茄早疫病的叶片高光谱数据随时间的变化情况,每隔 对 个染病样本进行拍摄,对每一次拍摄得到的高光谱图像进行校正后,选取图像中接种点附近的 个像素点作为感兴趣区域,并计算

11、每次拍摄得到的所有样本的平均光谱,计算公式如式光谱学与光谱分析第 卷()和式()()()式中,为感兴趣区域的平均光谱,为感兴趣区域的第个像素点的光谱数据,为像素点的总数为 ;为每次拍摄得到的所有样本平均光谱,为每一次拍摄样本的总数为 。将前次拍摄的所有样本平均光谱进而对比 内的光谱变化情况,如图所示。从图中可看出所有样品的光谱反射率具有相同的变化趋势,光谱曲线的反射峰发生在 附近,反射低谷在图番茄早疫病光谱变化曲线 ()图光谱平均反射率随时间的变化关系():;():():;():附近;同时发现在可见光波段范围内的 和近红外波段范围内的 均发生较明显的变化,因此对该波段的光谱反射率求平均后,观察

12、其平均值在 内的分布情况,如图所示。从图()中可以看出 接种早疫病叶片的光谱平均反射率随着时间的变化逐渐升高,产生这种变化的原因是病害后番茄叶片的自我保护机能得到激发,促使叶片内部的叶绿素、类胡萝卜素发生变化;从图()中可以看出 接种早疫病叶片的光谱平均反射率随着时间的变化逐渐降低,产生这种变化的原因是,病害出现会使得叶肉组织遭到破坏,蛋白质和水分丢失。红边是绿色植物在 之间反射率增高最快的点,红边的反射率变化能反映出番茄叶片的活性变化,如图所示。由图可知红边反射率随着时间降低,在 变化较快,后变化平缓。且在潜育期 范围内,其图()和图中的 时可看出曲线发生明显下降现象,说明了近红外光谱平均反

13、射率和红边可以反映出番茄早疫病潜育期的病变信息;因此,将 拍摄得到的高光谱数据作为模型训练、测试的番茄早疫病潜育期的数据。图红边反射率随时间的变化关系 高光谱数据的预处理高光谱数据的维度多,且维度之间存在较高的冗余和噪声。对光谱的预处理有以下三种方法:第一种是降维处理,通常选择 算法去除冗余,增加特征的表达能力,但一味降低维度会使信息丢失;第二种是降噪处理,通常选择 算法,提高高光谱数据的信噪比,但容易导致微弱且有用的信息丢失;第三种是既降维又降噪处理,能极大减少数据量,但针对番茄早疫病潜育期的微弱病害光谱信息,会使病害信息大量丢失,导致算法的识别率不高,不适合对番茄早疫病潜育期的光谱数据进行

14、处理;因此,本实验的预处理算法分别选择 降维和 降噪,进行比较分析。目标是选择少于原始数据维度数量的单位正交基,让原始番茄叶片高光谱数据变换到单位正交基上后,协方差为,投影后方差尽可能大。通过求协方差矩阵并将其相似对角化,得到特征值特征向量,并根据特征值从大到小将对第期胡政等:降维降噪处理对番茄早疫病潜育期高光谱识别效果的影响应的特征向量排列,用排列好的特征向量组成的矩阵乘以原始数据矩阵就得到降维后数据。番茄叶片接种早疫病和未接种早疫病在 时拍摄得到的高光谱数据均具有 个光谱维度,通过主成分变换后保留 的重要光谱信息,维度降低到维数据,分别代表第一主成分()、第二主成分()、第三主成分(),绘

15、制维数据分布的三视图如图所示。其中,五角星表示番茄叶片接种早疫病 并处于早疫病潜育的光谱数据经主成分变换后的分布,圆点表示未接种早疫病的光谱数据经主成分变换后的分布。图 变换数据分布三视图 由图可见,在三维空间接种和未接种区域的光谱数据是可分的,说明通过算法模型识别具有可行性,同时发现二者的部分数据点分布紧密,光谱信息具有极大的相似性。原始的光谱数据会因为番茄叶片的湿度、颗粒度等差异使高光谱数据的基线偏移从而产生噪声,如图()所示。通过 能够有效的消除番茄叶片的物理状态影响,提高光谱数据的信噪比,数学计算公式如式()和式()()()()()式()和式()中为每条光谱,为各光谱倾斜偏移量,为输入

16、原始光谱数据的平均光谱,为各光谱相对于平均光谱的线性平移量,()为校正后的光谱数据。图光谱数据 预处理():原始光谱;():处理后数据 ():;():具体实现过程为:首先计算输入原始光谱数据的平均光谱,然后每条光谱数据和平均光谱进行回归运算求得线性平移量和倾斜偏移量,最后每条原始光谱减去线性偏移量同时除以倾斜偏移量。经过 预处理后的光谱数据如图()所示。从图中可以看出,处理后的光谱数据,仍然保留原先的物理意义和光谱形状,相对于原始光谱数据各个光谱数据之间的距离变小,消除了噪声,使得光谱数据更加符合真实的分布。结果与讨论识别模型从构成上分为两类,一类是由单一的分类器构成的识别模型,如、逻辑回归、神经网络等 ,优点是结构简单、数据处理速度较快,缺点在于对于复杂的数据输入容易欠拟合、准确率不高;另一类是由多个分类器根据串、并联的方式集成的识别模型,如 、随机森林、极限森林等 ,识别时需要综合考虑各个分类器的识别结果,优点是对复杂的输入数据能够较好的识别、具有较高的准确性和鲁棒性,缺点是模型识别速度较慢、容易过拟合。本文选取的识别模型是以 为代表的单一的分类器构成的和以 代表的多个分类器集成的

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2