ImageVerifierCode 换一换
格式:DOCX , 页数:59 ,大小:529.18KB ,
资源ID:2787650      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2787650.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【沪教版六年制】六年级下册第五章有理数全章教案及习题.docx)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

【沪教版六年制】六年级下册第五章有理数全章教案及习题.docx

1、六年级下册 第五章 有理数知识点1、正数:大于0的数叫做正数。2、负数:在正数前面加上负号“-”的数叫做负数。3、0既不是正数也不是负数。零是正数和负数的分界。4、有理数:整数和分数统称为有理数。 有理数:正数:正整数、零、负整数 分数:正分数、负分数5、数轴:规定了原点、正方向、单位长度的直线叫做数轴。数轴上的点从左到右依次增大,正数大于零,零大于负数,正数大于负数。6、相反数:绝对值相等,只有负号不同的两个数叫做互为相反数。7、绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。一个正数的绝对值是它本身;一个

2、负数的绝对值是它的相反数;0的绝对值是0.8、有理数加法法则加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。表达式:(a+b)+c=a+(b+c)9、有理数减法法则减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b)10、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0.乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等

3、。表达式:(ab)c=a(bc)乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。表达式:a(b+c)=ab+ac注意:几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有因数为零,积就为零。也就是说,在积的各个因数中,只有一个负号,积为负;有两个负号,积为正;有三个负号,积为负;有四个负号,积为正;有零时积就是零。11、倒数 1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任

4、何一个不等于0的数,都得0.13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。an中,a叫做底数,n叫做指数。根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。14、有理数的混合运算顺序(1)“先乘方,再乘除,最后加减”的顺序进行;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。15、科学计数法:把一个大于10的数表示成a10n的形式(其中a是整数数位只有一位的数(即0a0 B.a0或a=0 D.a ”或“0,则a与b都是正数; ( )(5)一个非零数

5、的绝对值等于它的相反数,那么这个数一定是负数。 ( )3 选择题:(每小题2分,共20分)(1)下列说法正确的是( )(A)绝对值较大的数较大;(B)绝对值较大的数较小;(C)绝对值相等的两数相等;(D)相等两数的绝对值相等。(2)下列用四舍五入法得到的近似数中,精确到0.001,且有三个有效数字的是( )(A)0.0207; (B)0.207;(C)2.070; (C)20.700.(3)若a与b互为相反数,则下列式子成立的是( )(A)a-b=0; (B)a+b=1;(C)a+b=0; (D)ab=0 (4)、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m

6、2=_。(5)数轴上原点和原点左边的点表示的数是( )(A)负数; (B)正数;(C)非正数; (D)非负数(6)当a5时,|a-5|(5-a)=( )A4-2a;B0;C1;D-1(7)已知a、b、c都是非正数,且x-a+y-b+z-c=0,则(xyz)5的值是( ) A、负数B、非负数C、正数D、非正数(8)如果m0, 且m+n-mn-n B. nm-n-mC. mn-n-m D. mn-nm(9)下列说法不正确的个数是( ) 两个有理数的和可能等于零;两个有理数的和可能等于其中一个加数;两个有理数的和为正数时,这两个数都是正数;两个有理数的和为负数时,这两个数都是正数 A.1个 B.2个

7、 C.3个 D.4个(10)若a,b,c的位置如右图,则a-(b-c)的值是( )A.正数 B.负数 C.整数 D.不能确定4 设的值。(7分)5 计算:(前4题每小题5分,后两小题6分,共32分)有理数考点1、正数和负数 正数:大于零的数 负数:小于零的数(在正数前面加上负号“”的数)注意:0既不是正数也不是负数,它是正负数的分界点对于正数和负数,不能简单理解为带“+”号的数是正数,带“”号的数是负数例1、 向北走2000米与向南走1000米,若规定向北走为正,则向北走2000米可记作 ,向南走1000米,原地不动课记作 例2、 七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名

8、同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作15分,4分,0分,4分,15分。这五名同学的实际成绩分别是多少分?例3、 观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、1、2、+3、4、5、+6、7、8、 、 、 2)、1、3、5、7、 、 、 易错点:1、 误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a一定是正数吗?2、 对于“0”的含义理解不准确例:下列说法错误的是( )A、0是自然数 B、0是整数 C、0是偶数 D、海拔0米表示没有海拔考点2、有理数1、有理数的分类按定义分: 按性质符号分:有理数

9、注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。 2、0是整数不是分数例1、把下列各数填在相应的集合内:,-3,2,-1,-0.58,0,-3.14,0.618,10整数集合: 分数集合: 非负数集合: 例2、下列说法正确的是( )A 有理数分为正数和负数 B 有理数-a一定表示负数C 正整数、正分数、负整数、负分数统称为有理数 D 有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴

10、的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。(4)同一数轴的单位长度必须一致例1、图中哪 一个表示数轴?并说出理由。例2、请画出一条数轴,在并且在数轴上标出下面的有理数:3,-2,-3.5,0,+2,0.5.例4、 如图所示,在数轴上,点A,B,C,D依次表示1.5,-2,2,-2.5。说出个点与原点的位置关系以及与原点的距离是多少个单位长度? 例5、如图,数轴上所标出的点中,相邻两点间的距离相等,则点表示的数为( )A、30 B、50 C、60 D、80例6、如图,数轴的一部分被墨水污染,被污染的部分内含有的整数为_例7、文具店、书店和玩具店一次坐落在一条笔直的东西

11、走向的大街上,文具店位于书店西边20m处,玩具店位于书店东边100m处。小明从书店沿街向东走了40m,接着又向东走了60m,你知道此时小明的位置在哪吗?例8、有理数a,b,c在数轴上的位置如图所示,求的值3、 相反数(重点)定义:只有符号不同的两个数叫做相反数。(在数轴上分别位置原点的两侧,到原点的距离相等的两个点所表示的数叫做互为相反数。)相反数的表示方法及多重符号的化简:(1)例1、有理数的相反数是( )(A) (B) (C)3 (D) 3例2、a的相反数是 , -a的相反数是 , 0的相反数是 例3、若a和b互为相反数,则a+b=例4、如果,那么,两个实数一定是 ( )A.都等于0 B.

12、一正一负 C.互为相反数 D.互为倒数例5、如果与1互为相反数,则等于( )A2BC1D4、绝对值(难点)绝对值的定义:数轴上表示a的点与原点的距离叫做a的绝对值,记为 a,读作:a的绝对值因为数的绝对值是表示两点之间的距离,所以一个数的绝对值不可能是负数。即:任何数的绝对值都是正数(0的绝对值是0)绝对值的代数定义:1)一个正数的绝对值是它本身 2)一个负数的绝对值是它的相反数 3)0的绝对值是0 绝对值的计算规律:(1) 互为相反数的两个数的绝对值相等(2) 若,则a=b或a=-b;(3) 若例1、如果| -a | = -a,下列成立的是( )A .a0 D.a0例2、 的绝对值是8。例3

13、、若,则b= ,若 ,若,则a 0例4、若,则等于( )A、2 B、8 C、2或8 D、例5、已知(1) 求a,b的值(2) 求的值求例6、计算: 例7、 (2)例8、根据,解答下列问题(1)当x为何值时, 有最小值?最小值是多少?(2)当x为何值时, 有最大值?最大值是多少?例9、已知某零件的标准直径是10mm,超过规定直径长度的数量(单位:mm)记作正数,不足规定直径长度的数量(单位:mm)记作负数,检验员某次抽查了5件样品,检查的结果如下表:序号12345直径长度(mm)+0.1-0.15+0.2-0.05+0.25(1) 试指出哪件样品的大小最符合要求;(2) 如果规定偏差的绝对值在0

14、.18mm之内是正品,偏差的绝对值在0,18mm0.22mm之间是次品,偏差绝对值查过0.22mm是废品,那么上述5件样品中,哪些是正品,哪些是次品,哪些是废品?易错点:1、画数轴时,缺少要素2、误认为,则a0;若,则a0,n|n|,用“”把、连接起来。考点3、有理数的加减(重难点)1、有理数加法(1)同号两数相加,取相同的符号,并把其绝对值相加;(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得零;(4)一个数与零相加,仍得这个数。例1、如果两个有理数的和是正数,那么这两个数( )。(1) 都是正数(2) 一个是正数,一个是零(3)

15、 两个数异号,且正数的绝对值较大D.以上三种情况都有可能例2、简单计算(1); (2); (3); (4)(5)(-51)+(+37); (6)(+15)+(-15); (7)(+4.25)+; (8)(9)15+0 ;(10)-4.7+0 ;(11)0+0例3、复杂有理数计算(1)(+26)+(-14)+(-16)+(+18) (2) 例4、已知与互为相反数,求的值。例5、小明在一条南北方向的公路上散步,他从A地出发,每10分钟记录自己的散步情况(向南为正方向,单位:米),1小时后停下来时记录如下:-1008,1100,-976,1010,-827,946此时他在A地的什么方向,距离A地多远

16、?小明散步共走了多少米?例6、a与b互为相反数,b与c相乘的积是最大的负整数,d与e的和等于-2,则的值是多少?例7、读一读:式子“1+2+3+4+5.+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写不方便,为简单起见,我们可以将“1+2+3+4+5.+100”表示为,这是求和符号。例如“1+3+5+7+9+.+99”(即从1开始的100以内的连续奇数的和)可表示为。通过对以上材料的阅读,请回答问题:(1)2+4+6+8+.+100(即从2开始的100以内的连续偶数的和求和符号表示为_;(2)计算:_(填写最后的计算结果)。例8、从图(1)中找规律,并在图(2)填上合适

17、的数2、有理数减法有理数减法法则中,字母a,b表示任意有理数;0减去任何数得这个数的相反数。有理数的减法可转化为有理数的加法进行计算,不要将减法法则与加法法则中异号两书相加混淆。计算有理数的减法时,要把减号变为加好,把减数变为它的相反数,即必须同时改变两个符号:意识运算符号由“-”变为“+”;而是减数的性质符号由正变为负或由负变为正。例1、下列说法正确的是( )A. 两数相减,被减数一定大于减数B. 0减去一个数仍得这个数C. 互为相反的两个数差为0D. 减去一个正数,差一定小于被减数例2、计算:(1) (2) (3) (4)例3、列出算式并计算下列各题:(1)(2) 潜水员从海平面以下24m

18、处上升到海平面以下15m处,此潜水员上升了多少米?例4、已知a0,b0,且试判断a-b的符号。3、有理数加减的综合运用例1、计算:(1) (2)(3)1-2-3+4+5-6-7+8+9-11+12+.+2005-2006-2007+2008+2009-2010.(4)例2、以地面为基准,A处高+2.5米,B处高为-17.8米,C处高-32.44m,问:(1) A处比B出高多少?(2) B处和C处哪个高?高多少?(3) A处和C处哪个低?低多少?例3、小亮做这样一道题:“计算”,其中表示被污染看不清的一个数,他翻开答案知道该题的结果是6,那么 表示的数是多少?例4、-a,-b在数轴上的位置如图, -b -a 0化简:例5、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每天上班人数不一定相等,实际每日产量与计划每日产量相比情况如下表:(增加的辆数为正数,减少的辆数为负数)星期一二三四五六日增减-5+7-3+4+10-9-25(1) 求星期日生产摩托车多少辆?(2) 本周总产量与计划产量相比是增加了,还是减少了?差是多少?(3) 产量最多的一天与产量最少的一天的产量差是多少?考点4 有理数的乘除、乘方1、 有理数的乘法两数相乘,同号得正,异号得负;任何数

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2