ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:289KB ,
资源ID:2829370      下载积分:14 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2829370.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2006年云南高考文科数学真题及答案.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2006年云南高考文科数学真题及答案.doc

1、2006年云南高考文科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1(5分)已知向量、满足|=1,|=4,且=2,则与夹角为()ABCD2(5分)设集合M=x|x2x0,N=x|x|2,则()AMN=BMN=MCMN=MDMN=R3(5分)已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则()Af(2x)=e2x(xR)Bf(2x)=ln2lnx(x0)Cf(2x)=2ex(xR)Df(2x)=lnx+ln2(x0)4(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()AB4C4D5(5分)设Sn是等差数列an的前n项和,若S7=35,则a4=(

2、)A8B7C6D56(5分)函数的单调增区间为()AB(k,(k+1),kZCD7(5分)从圆x22x+y22y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()ABCD08(5分)ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()ABCD9(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()A16B20C24D3210(5分)在的展开式中,x4的系数为()A120B120C15D1511(5分)抛物线y=x2上的点到直线4x+3y8=0距离的最小值是()ABCD312(5分)用长度分别为2、

3、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()ABCD20cm2二、填空题(共4小题,每小题4分,满分16分)13(4分)已知函数f(x)=a,若f(x)为奇函数,则a=14(4分)已知正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于15(4分)设z=2yx,式中变量x、y满足下列条件:,则z的最大值为16(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日不同的安排方法共有 种(用数字作答)三、解答题(共6小题,满分74分)17(12分)已知an为等比数列,

4、求an的通项公式18(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值19(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组设每只小白鼠服用A有效的概率为,服用B有效的概率为()求一个试验组为甲类组的概率;()观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望20(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段点A、B在l1上,C在l2上,AM=MB=MN(

5、)证明ACNB;()若ACB=60,求NB与平面ABC所成角的余弦值21(12分)设P是椭圆=1(a1)短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值22(14分)设a为实数,函数f(x)=x3ax2+(a21)x在(,0)和(1,+)都是增函数,求a的取值范围2006年云南高考文科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1(5分)已知向量、满足|=1,|=4,且=2,则与夹角为()ABCD【分析】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,用数量积列出等式,变化出夹角的余弦表示式,代入给出的数值,求出余弦值,注意向量夹角的范围,求出适合的角【解答

6、】解:向量a、b满足,且,设与的夹角为,则cos=,【0】,=,故选C2(5分)设集合M=x|x2x0,N=x|x|2,则()AMN=BMN=MCMN=MDMN=R【分析】M、N分别是二次不等式和绝对值不等式的解集,分别解出再求交集合并集【解答】解:集合M=x|x2x0=x|0x1,N=x|x|2=x|2x2,MN=M,故选:B3(5分)已知函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,则()Af(2x)=e2x(xR)Bf(2x)=ln2lnx(x0)Cf(2x)=2ex(xR)Df(2x)=lnx+ln2(x0)【分析】本题考查反函数的概念、互为反函数的函数图象的关系、求反

7、函数的方法等相关知识和方法根据函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称可知f(x)是y=ex的反函数,由此可得f(x)的解析式,进而获得f(2x)【解答】解:函数y=ex的图象与函数y=f(x)的图象关于直线y=x对称,所以f(x)是y=ex的反函数,即f(x)=lnx,f(2x)=ln2x=lnx+ln2(x0),选D4(5分)双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=()AB4C4D【分析】由双曲线mx2+y2=1的虚轴长是实轴长的2倍,可求出该双曲线的方程,从而求出m的值【解答】解:双曲线mx2+y2=1的虚轴长是实轴长的2倍,m0,且双曲线方程为,m=,故

8、选:A5(5分)设Sn是等差数列an的前n项和,若S7=35,则a4=()A8B7C6D5【分析】充分运用等差数列前n项和与某些特殊项之间的关系解题【解答】解:Sn是等差数列an的前n项和,若S7=7=7a4=35,a4=5,故选D6(5分)函数的单调增区间为()AB(k,(k+1),kZCD【分析】先利用正切函数的单调性求出函数单调增时x+的范围i,进而求得x的范围【解答】解:函数的单调增区间满足,单调增区间为,故选C7(5分)从圆x22x+y22y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()ABCD0【分析】先求圆心到P的距离,再求两切线夹角一半的三角函数值,然

9、后求出结果【解答】解:圆x22x+y22y+1=0的圆心为M(1,1),半径为1,从外一点P(3,2)向这个圆作两条切线,则点P到圆心M的距离等于,每条切线与PM的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选B8(5分)ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()ABCD【分析】根据等比数列的性质,可得b=a,将c、b与a的关系结合余弦定理分析可得答案【解答】解:ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B9(5分)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积

10、是()A16B20C24D32【分析】先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积【解答】解:正四棱柱高为4,体积为16,底面积为4,正方形边长为2,正四棱柱的对角线长即球的直径为2,球的半径为,球的表面积是24,故选C10(5分)在的展开式中,x4的系数为()A120B120C15D15【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求出x4的系数【解答】解:在的展开式中x4项是=15x4,故选项为C11(5分)抛物线y=x2上的点到直线4x+3y8=0距离的最小值是()ABCD3【分析】设抛物线y=x2上一点为(m,m2),该点到直线4x+3y8=0的距

11、离为,由此能够得到所求距离的最小值【解答】解:设抛物线y=x2上一点为(m,m2),该点到直线4x+3y8=0的距离为,分析可得,当m=时,取得最小值为,故选B12(5分)用长度分别为2、3、4、5、6(单位:cm)的5根细木棒围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为()ABCD20cm2【分析】设三角形的三边分别为a,b,c,令p=,则p=10海伦公式S=故排除C,D,由于等号成立的条件为10a=10b=10c,故“=”不成立,推测当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,进而得到答案【解答】解:设三角形的三边分别为a,b,c,令p=,则

12、p=10由海伦公式S=知S=203由于等号成立的条件为10a=10b=10c,故“=”不成立,S203排除C,D由以上不等式推测,当三边长相等时面积最大,故考虑当a,b,c三边长最接近时面积最大,此时三边长为7,7,6,用2、5连接,3、4连接各为一边,第三边长为7组成三角形,此三角形面积最大,面积为,故选B二、填空题(共4小题,每小题4分,满分16分)13(4分)已知函数f(x)=a,若f(x)为奇函数,则a=【分析】因为f(x)为奇函数,而在x=0时,f(x)有意义,利用f(0)=0建立方程,求出参数a的值【解答】解:函数若f(x)为奇函数,则f(0)=0,即,a=故答案为14(4分)已知

13、正四棱锥的体积为12,底面对角线长为,则侧面与底面所成的二面角等于60【分析】先根据底面对角线长求出边长,从而求出底面积,再由体积求出正四棱锥的高,求出侧面与底面所成的二面角的平面角的正切值即可【解答】解:正四棱锥的体积为12,底面对角线的长为,底面边长为2,底面积为12,所以正四棱锥的高为3,则侧面与底面所成的二面角的正切tan=,二面角等于60,故答案为6015(4分)设z=2yx,式中变量x、y满足下列条件:,则z的最大值为11【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2yx表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可【解答】解:,在坐标系中画出图

14、象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在ABC中满足z=2yx的最大值是点C,代入得最大值等于11故填:1116(4分)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲、乙二人都不安排在5月1日和2日不同的安排方法共有 2400种(用数字作答)【分析】本题是一个分步计数问题,先安排甲、乙两人在假期的后5天值班,有A52种排法,其余5人再进行排列,有A55种排法,根据分步计数原理得到结果【解答】解:由题意知本题是一个分步计数问题,首先安排甲、乙两人在假期的后5天值班,有A52=20种排法,其余5人再进行排列,有A55=120种排法,根据分步计数原理知共有2

15、0120=2400种安排方法故答案为:2400三、解答题(共6小题,满分74分)17(12分)已知an为等比数列,求an的通项公式【分析】首先设出等比数列的公比为q,表示出a2,a4,利用两者之和为,求出公比q的两个值,利用其两个值分别求出对应的首项a1,最后利用等比数列的通项公式得到即可【解答】解:设等比数列an的公比为q,则q0,a2=,a4=a3q=2q所以+2q=,解得q1=,q2=3,当q1=,a1=18所以an=18()n1=233n当q=3时,a1=,所以an=3n1=23n318(12分)ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值【分析】利用三角

16、形中内角和为,将三角函数变成只含角A,再利用三角函数的二倍角公式将函数化为只含角,利用二次函数的最值求出最大值【解答】解:由A+B+C=,得=,所以有cos=sincosA+2cos=cosA+2sin=12sin2+2sin=2(sin)2+当sin=,即A=时,cosA+2cos取得最大值为故最大值为19(12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组设每只小白鼠服用A有效的概率为,服用B有效的概率为()求一个试验组为甲类组

17、的概率;()观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望【分析】(1)由题意知本题是一个独立重复试验,根据所给的两种药物对小白鼠有效的概率,计算出小白鼠有效的只数的概率,对两种药物有效的小白鼠进行比较,得到甲类组的概率(2)由题意知本试验是一个甲类组的概率不变,实验的条件不变,可以看做是一个独立重复试验,所以变量服从二项分布,根据二项分布的性质写出分布列和期望【解答】解:(1)设Ai表示事件“一个试验组中,服用A有效的小鼠有i只“,i=0,1,2,Bi表示事件“一个试验组中,服用B有效的小鼠有i只“,i=0,1,2,依题意有:P(A1)=2=,P(A2)=P(B0)=

18、,P(B1)=2=,所求概率为:P=P(B0A1)+P(B0A2)+P(B1A2)=+=()的可能值为0,1,2,3且B(3,)P(=0)=()3=,P(=1)=C31()2=,P(=2)=C32()2=,P(=3)=()3=的分布列为:0123P数学期望E=3=20(12分)如图,l1、l2是互相垂直的异面直线,MN是它们的公垂线段点A、B在l1上,C在l2上,AM=MB=MN()证明ACNB;()若ACB=60,求NB与平面ABC所成角的余弦值【分析】(1)欲证ACNB,可先证BN面ACN,根据线面垂直的判定定理只需证ANBN,CNBN即可;(2)易证N在平面ABC内的射影H是正三角形AB

19、C的中心,连接BH,NBH为NB与平面ABC所成的角,在RtNHB中求出此角即可【解答】解:()由已知l2MN,l2l1,MNl1=M,可得l2平面ABN由已知MNl1,AM=MB=MN,可知AN=NB且ANNB又AN为AC在平面ABN内的射影ACNB()AM=MB=MN,MN是它们的公垂线段,由中垂线的性质可得AN=BN,RtCANRtCNB,AC=BC,又已知ACB=60,因此ABC为正三角形RtANBRtCNB,NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连接BH,NBH为NB与平面ABC所成的角在RtNHB中,cosNBH=21(12分)设P是椭圆=1(a1)

20、短轴的一个端点,Q为椭圆上一个动点,求|PQ|的最大值【分析】依题意可知|PQ|=,因为Q在椭圆上,所以x2=a2(1y2),|PQ|2=a2(1y2)+y22y+1=(1a2)y22y+1+a2=(1a2)(y)2+1+a2由此分类讨论进行求解【解答】解:由已知得到P(0,1)或P(0,1)由于对称性,不妨取P(0,1)设Q(x,y)是椭圆上的任一点,则|PQ|=,又因为Q在椭圆上,所以,x2=a2(1y2),|PQ|2=a2(1y2)+y22y+1=(1a2)y22y+1+a2=(1a2)(y)2+1+a2因为|y|1,a1,若a,则|1,所以如果它包括对称轴的x的取值,那么就是顶点上取得

21、最大值,即当10时,在y=时,|PQ|取最大值;如果对称轴不在y的取值范围内的话,那么根据图象给出的单调性来求解即当1时,则当y=1时,|PQ|取最大值222(14分)设a为实数,函数f(x)=x3ax2+(a21)x在(,0)和(1,+)都是增函数,求a的取值范围【分析】先对函数f(x)进行求导得到一个二次函数,根据二次函数的图象和性质令f(x)0在(,0)和(1,+)成立,解出a的值【解答】解:f(x)=3x22ax+(a21),其判别式=4a212a2+12=128a2()若=128a2=0,即a=,当x(,),或x(,+)时,f(x)0,f(x)在(,+)为增函数所以a=()若=128a20,恒有f(x)0,f(x)在(,+)为增函数,所以a2,即a(,)(,+)()若128a20,即a,令f(x)=0,解得x1=,x2=当x(,x1),或x(x2,+)时,f(x)0,f(x)为增函数;当x(x1,x2)时,f(x)0,f(x)为减函数依题意x10且x21由x10得a,解得1a由x21得3a,解得a,从而a1,)综上,a的取值范围为(,+)1,),即a(,1,+)

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2