ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:2.27MB ,
资源ID:2829448      下载积分:13 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2829448.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2004年云南高考理科数学真题及答案.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2004年云南高考理科数学真题及答案.doc

1、2004年云南高考理科数学真题及答案一、选择题(共12小题,每小题5分,满分60分)1(5分)设集合,则集合中元素的个数为A1B2C3D42(5分)函数的最小正周期是ABCD3(5分)设数列是等差数列,是数列的前项和,则ABCD4(5分)圆在点处的切线方程为ABCD5(5分)函数的定义域是A,B,C,D,6(5分)设复数的幅角的主值为,虚部为,则ABCD7(5分)设双曲线的焦点在轴上,两条渐近线为,则双曲线的离心率A5BCD8(5分)不等式的解集为AB,CD,9(5分)正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为ABCD10(5分)在中,则边上的高为ABCD11(5分)设函数

2、则使得的自变量的取值范围为A, B,C, D,12(5分)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有A12种B24种C36种D48种二、填空题(共4小题,每小题4分,满分16分)13(4分)用平面截半径为的球,如果球心到截面的距离为,那么截得小圆的面积与球的表面积的比值为 14(4分)函数在区间的最小值为 15(4分)已知函数是奇函数,当时,设的反函数是,则 16(4分)设是曲线上的一个动点,则点到点的距离与点到轴的距离之和的最小值是 三、解答题(共6小题,满分74分)17(12分)已知为锐角,且,求的值18(12分)解方程19(12分)某村计划建造一个室内面积为

3、的矩形蔬菜温室在温室内,沿左、右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?20(12分)三棱锥中,侧面与底面垂直,(1)求证;(2)如果,求与侧面所成角的大小21(12分)设椭圆的两个焦点是,且椭圆上存在点,使得直线与直线垂直求实数的取值范围设是相应于焦点的准线,直线与相交于点若,求直线的方程22(14分)已知数列的前项和满足:,(1)写出求数列的前3项,;(2)求数列的通项公式;(3)证明:对任意的整数,有2004年高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1(5分)设集

4、合,则集合中元素的个数为A1B2C3D4【解答】解:根据题意,将代入,得,所以方程组有两组解,因此集合中元素的个数为2个,故选:2(5分)函数的最小正周期是ABCD【解答】解:对于,函数是函数轴上方的图象不动将轴下方的图象向上对折得到的,如图示,故,故选:3(5分)设数列是等差数列,是数列的前项和,则ABCD【解答】解:,得,故选:4(5分)圆在点处的切线方程为ABCD【解答】解:法一:该二次方程应有两相等实根,即,解得,即法二:点在圆上,点为切点,从而圆心与的连线应与切线垂直又圆心为,解得,切线方程为故选:5(5分)函数的定义域是A,B,C,D,【解答】解:或的定义域为,故选:6(5分)设复

5、数的幅角的主值为,虚部为,则ABCD【解答】解:复数的幅角的主值为设复数虚部为故选:7(5分)设双曲线的焦点在轴上,两条渐近线为,则双曲线的离心率A5BCD【解答】解:依题意可知,求得故选:8(5分)不等式的解集为AB,CD,【解答】解:即即,解得,即,解法二:解得,故选:9(5分)正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为ABCD【解答】解:由题意正三棱锥的底面边长为2,侧面均为直角三角形,可知:侧棱长为,三条侧棱两两垂直,所以此三棱锥的体积为故选:10(5分)在中,则边上的高为ABCD【解答】解:由点向作垂线,交点为设,则,解得故选:11(5分)设函数则使得的自变量的取

6、值范围为A,B,C,D,【解答】解:等价于解得:或或解得:综上所述,或故选:12(5分)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有A12种B24种C36种D48种【解答】解:将4名教师分配到3所中学任教,每所中学至少1名教师,只有一种结果1,1,2,首先从4个人中选2个作为一个元素,使它与其他两个元素在一起进行排列,共有种结果,故选:二、填空题(共4小题,每小题4分,满分16分)13(4分)用平面截半径为的球,如果球心到截面的距离为,那么截得小圆的面积与球的表面积的比值为【解答】解:小圆半径是:,小圆的面积是:,球的表面积是;截得小圆的面积与球的表面积的比值为:故

7、答案为:14(4分)函数在区间的最小值为1【解答】解:,最小值为1,故答案为:115(4分)已知函数是奇函数,当时,设的反函数是,则【解答】解:法一:当时,由已知又是奇函数,即法二:当时,由已知又是奇函数,即根据反函数定义令 得,即:答案为:16(4分)设是曲线上的一个动点,则点到点的距离与点到轴的距离之和的最小值是 【解答】解:的图象是以轴为准线,为焦点的抛物线,当点为点与点的连线与抛物线的交点时,距离和最小,最小值为:故答案为:三、解答题(共6小题,满分74分)17(12分)已知为锐角,且,求的值【解答】解:,为锐角18(12分)解方程【解答】解:当时,有:,化简得:,解之得: 或(舍去)

8、又得 ,故不可能舍去当时,有:,化简得:,解之得:或(舍去),综上可得,原方程的解为19(12分)某村计划建造一个室内面积为的矩形蔬菜温室在温室内,沿左、右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?【解答】解:设矩形温室的左侧边长为,后侧边长为,则蔬菜的种植面积所以当且仅当,即,时,答:当矩形温室的左侧边长为,后侧边长为时,蔬菜的种植面积最大,最大种植面积为20(12分)三棱锥中,侧面与底面垂直,(1)求证;(2)如果,求与侧面所成角的大小【解答】解:(1)证明:取中点,连接、又侧面底面底面又为直角三角形(2)解:取

9、的中点为,连接,所以有,由(1)有平面,由三垂线定理得平面平面,又是等腰直角三角形,取的中点,连接,则,又平面平面,且交线是,平面即为与平面所成的角故与平面所成的角为21(12分)设椭圆的两个焦点是,且椭圆上存在点,使得直线与直线垂直求实数的取值范围设是相应于焦点的准线,直线与相交于点若,求直线的方程【解答】解:(1)直线直线以为圆心以为半径的圆:与椭圆:有交点即有解又(2)设,直线方程为:,直线的方程为:,准线的方程为,设点的坐标为,则,解可得,从而,则或,得到的方程或22(14分)已知数列的前项和满足:,(1)写出求数列的前3项,;(2)求数列的通项公式;(3)证明:对任意的整数,有【解答】解:(1)当时,有:;当时,有:;当时,有:;综上可知,;(2)由已知得:化简得:上式可化为:故数列是以为首项,公比为2的等比数列故数列的通项公式为:(3)由已知得:故声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/4/23 19:41:17;用户:James;邮箱:15399095293;学号:8796782

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2