ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:484.50KB ,
资源ID:2830256      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2830256.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2005年黑龙江高考理科数学真题及答案.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2005年黑龙江高考理科数学真题及答案.doc

1、2005年黑龙江高考理科数学真题及答案本试卷分第卷(选择题)和第卷(非选择题)两部分 第I卷1至2页,第卷3至10页。考试结束后,将本试卷和答题卡一并交回第I卷注意事项:1答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。2每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。不能答在试题卷上。3本卷共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。参考公式:如果事件A、B互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么 其中R表示球的半径P(AB)=

2、P(A)P(B)如果事件A在一次试验中发生的概率是 球的体积公式P,那么n次独立重复试验中恰好发生k 次的概率 其中R表示球的半径YCY一、选择题:1函数f(x)=|sinx+cosx|的最小正周期是( )ABCD22正方体ABCDA1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点。那么,正方体的过P、Q、R的截面图形是( )A三角形B四边形C五边形D六边形3函数的反函数是( )ABCD4已知函数内是减函数,则( )A01B10,则MN为( )Ax|4x2或3x7Bx|4x2或3x3Dx|xa4a5Ba1a8a4+a5Da1a8=a4a512将半径都为1的4个铅球完全装人形状为正四

3、面体的容品里,这个正四面体的高最小值为( )ABCD第卷注意事项:1用钢笔或圆珠笔直接答在试题卷中。2答卷前将密封线内的项目填写清楚。3本卷共10小题,共90分。YCY二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13圆心为(1,2)且与直线5x12y7=0相切的圆的方程为 .14设为第四象限的角,若= .15在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个.16下面是关于三棱锥的四个命题:底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥.底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.底面是等边三角形,侧

4、面的面积都相等的三棱锥是正三棱锥.侧棱与底面所成的角都相等,且侧面与底面所成的二面角都相等的三棱锥是正三棱锥.其中,真命题的编号是 (写出所有真命题的编号).三、解答题:(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17(本小题满分12分)设函数的取值范围.18(本小题满分12分)已知是各项均为正数的等差数列,、成等差数列.又()证明为等比数列;()如果无穷等比数列各项的和,求数列的首项a1和公差d.(注:无穷数列各项的和即当时数列前n项和的极限)19(本小题满分12分)甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,

5、即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令为本场比赛的局数,求的概率分布和数学期望.(精确到0.0001)20(本小题满分12分)如图,四棱锥PABCD中,底面ABCD为矩形,PD底面ABCD,AD=PD,E、F分别为CD、PB的中点.()求证:EF平面PAB;()设AB=BC,求AC与平面AEF所成的角的大小.21(本小题满分14分)P、Q、M、N四点都在椭圆上,F为椭圆在y轴正半轴上的焦点.已知求四边形PMQN的面积的最小值和最大值.22(本小题满分12分)已知()当x为何值时,f (x)取得最小值?证明你的结论;()设在1,1上是单调函数,求a的取值范围.参考答案1-6:

6、 CDBBCC 7-12: ACACBC13. ;14.15. 192; 16. ,17.本小题主要考查指数函数的性质、不等式性质和解法,考查分析问题的能力和计算能力,满分12分解:由于是增函数,等价于(1) 当时,式恒成立。(2) 当时,式化为,即(3) 当时,式无解综上的取值范围是18.本小题主要考查等差数列、等比数列的基本知识以及运用这些知识的能力。满分12分。()证明:、成等差数列,即又设等差数列的公差为,则,即,这时是首项,公比为的等比数列。()解:如果无穷等比数列的公比,则当时其前项和的极限不存在。因而,这时公比,这样的前项和则由得公差,首项19.本小题考查离散型随机变量分布和数学

7、期望等概念,考查运用概率知识解决实际问题的能力。满分12分解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为10.60.4比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P(3)比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而P(4)比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而P(5)所以的概率分布为345P0.280.37440.3456的期望3P(3)4P(4)5P(5)4.065620.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识、及思维能力和空间想象能力。满分12分。证明:()证明

8、:连结EP, 底面ABCD,DE在平面ABCD内,。又CEED,PDADBC,F为PB中点,由三垂线定理得,在中,PFAF。又PEBEEA,PB、FA为平面PAB内的相交直线,EF平面PAB。()解:不妨设BC1,则ADPD1,AB,PA,ACPAB为等腰直角三角形,且PB2,F为其斜边中点,BF1,且AFPB。PB与平面AEF内两条相交直线EF、AF都垂直,PB平面AEF。连结BE交AC于G,作GHBP交EF于H,则GH平面AEF,GAH为AC与平面AEF所成的角。由EGCBGA可知EG,由ECHEBF可知,与平面所成的角为21.本小题主要考查椭圆和直线的方程与性质,两条直线垂直的条件,两点

9、间的距离,不等式的性质等基本知识及综合分析能力。满分14分。解:如图,由条件知MN和PQ是椭圆的两条弦,相交于焦点F(0,1),且PQMN,直线PQ、NM中至少有一条存在斜率,不妨设PQ的斜率为。又PQ过点F(0,1),故PQ方程为,将此式代入椭圆方程得设P、Q两点的坐标分别为、,则,从而,(1)当时,MN的斜率为,同上可推得故四边形的面积令,得因为,当时,且S是以为自变量的增函数,所以(2)当时,MN为椭圆长轴,综合(1),(2)知,四边形PMQN面积的最大值为2,最小值为22本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力。满分12分。解:(I)对函数求导数,得已知,函数()当x为何值时,f(x)取得最小值?证明你的结论;()设f(x)在-1,1上是单调函数,求a的取值范围令,得,从而,解得,其中当变化时,的变化情况如下表:00极大值极小值当在处取到极大值,在处取到极小值。当时,在上为减函数,在上为增函数,而当时,;当时,所以当时,取得最小值。(II)当时,在上为单调函数的充要条件是,即,解得。综上,在上为单调函数的充要条件。即的取值范围是。

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2