ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:821KB ,
资源ID:2830624      下载积分:14 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/2830624.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2020年高考数学真题(理科)(广东自主命题)(原卷版).doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2020年高考数学真题(理科)(广东自主命题)(原卷版).doc

1、2020年高考理科数学试题及答案注意事项:1答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若z=1+i,则|z22z|=A0B1CD22设集合A=x|x240,B=x|2x+a0,且AB=x|2x1,则a=A4B2C2D43埃及胡夫金字塔是古代世界建筑奇迹之一,

2、它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为ABCD4已知A为抛物线C:y2=2px(p0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=A2B3C6D95某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在10C至40C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是ABCD6函数的图像在点处的切线方程为ABCD7设函数在的图像大致如下图,则f(x)的

3、最小正周期为ABCD8的展开式中x3y3的系数为A5B10C15D209已知,且,则ABCD10已知为球的球面上的三个点,为的外接圆,若的面积为,则球的表面积为ABCD11已知M:,直线:,为上的动点,过点作M的切线,切点为,当最小时,直线的方程为ABCD12若,则ABCD二、填空题:本题共4小题,每小题5分,共20分。13若x,y满足约束条件则z=x+7y的最大值为.14设为单位向量,且,则.15已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为.16如图,在三棱锥PABC的平面展开图中,AC=1,ABAC,ABAD,CAE=30,则co

4、sFCB=.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)设是公比不为1的等比数列,为,的等差中项(1)求的公比;(2)若,求数列的前项和18(12分)如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,是底面的内接正三角形,为上一点,(1)证明:平面;(2)求二面角的余弦值19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至

5、有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.20.(12分)已知A、B分别为椭圆E:(a1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.21(12分)已知函数.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)x3+1,求a的取值范围.(二)选考题:共10分。请考生在第22、23题中

6、任选一题作答。如果多做,则按所做的第一题计分。22选修44:坐标系与参数方程(10分)在直角坐标系中,曲线的参数方程为为参数以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)当时,是什么曲线?(2)当时,求与的公共点的直角坐标23选修45:不等式选讲(10分)已知函数(1)画出的图像;(2)求不等式的解集理科数学试题参考答案(A卷)选择题答案一、选择题1D2B3C4C5D6B7C8C9A10A11D12B非选择题答案二、填空题1311415216三、解答题17解:(1)设的公比为,由题设得即.所以解得(舍去),.故的公比为.(2)设为的前n项和.由(1)及题设可得,.所以,

7、.可得所以.18解:(1)设,由题设可得,.因此,从而.又,故.所以平面.(2)以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由题设可得.所以.设是平面的法向量,则,即,可取.由(1)知是平面的一个法向量,记,则.所以二面角的余弦值为.19解:(1)甲连胜四场的概率为(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛比赛四场结束,共有三种情况:甲连胜四场的概率为;乙连胜四场的概率为;丙上场后连胜三场的概率为所以需要进行第五场比赛的概率为(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负

8、、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为,因此丙最终获胜的概率为20解:(1)由题设得A(a,0),B(a,0),G(0,1).则,=(a,1).由=8得a21=8,即a=3.所以E的方程为+y2=1(2)设C(x1,y1),D(x2,y2),P(6,t).若t0,设直线CD的方程为x=my+n,由题意可知3n3.由于直线PA的方程为y=(x+3),所以y1=(x1+3).直线PB的方程为y=(x3),所以y2=(x23).可得3y1(x23)=y2(x1+3).由于,故,可得,即将代入得所以,代入式得解得n=3(含去),n=.故直线CD的方程为,即直线CD过定点(,0)

9、若t=0,则直线CD的方程为y=0,过点(,0).综上,直线CD过定点(,0).21解:(1)当a=1时,f(x)=ex+x2x,则=ex+2x1故当x(,0)时,0所以f(x)在(,0)单调递减,在(0,+)单调递增(2)等价于.设函数,则.(i)若2a+10,即,则当x(0,2)时,0.所以g(x)在(0,2)单调递增,而g(0)=1,故当x(0,2)时,g(x)1,不合题意.(ii)若02a+12,即,则当x(0,2a+1)(2,+)时,g(x)0.所以g(x)在(0,2a+1),(2,+)单调递减,在(2a+1,2)单调递增.由于g(0)=1,所以g(x)1当且仅当g(2)=(74a)e21,即a.所以当时,g(x)1.(iii)若2a+12,即,则g(x).由于,故由(ii)可得1.故当时,g(x)1.综上,a的取值范围是.22解:(1)当k=1时,消去参数t得,故曲线是圆心为坐标原点,半径为1的圆(2)当k=4时,消去参数t得的直角坐标方程为的直角坐标方程为由解得故与的公共点的直角坐标为23解:(1)由题设知的图像如图所示(2)函数的图像向左平移1个单位长度后得到函数的图像的图像与的图像的交点坐标为由图像可知当且仅当时,的图像在的图像上方,故不等式的解集为

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2