1、2020上海春考数学解析1.集合A=1.3,B=1.2.a,若AB,则a=【考点】集合与集合的关系【解析】32.不等式3的解集为X【考点】不等式的解法【解析】不要忘记x为正数3.函数y=tan2x的最小正周期为【考点】三角函数的周期【解析】T=24.已知复数二+2=6+i,则=的实部为【考点】复数的概念和运算【解析】设=a+bi,则=+2=3a-bi,故实部a=25.已知3sin 2x=2sinx,x(0,),则x=【考点】三角恒等式(二倍角公式)【解析】已知式子可化为6sinxcosx-2sinx=0,x(0.),.cosx=3故x=arccos6.函数y=a-3*+为偶函数,则a=【考点】
2、函数的奇偶性【解析】因为连函数为偶函数,故f(-x)=a-+3=f(x)=a3+得a=1.7.已知直线:x+ay=1:ax+y=1,.则的距离为【考点】直线与直线的关系【解析】两条直线平行,则a=-1,:x-y-1=0.l:x-y+1=0.两条直线的距离d=218.二项式(2x+x)3.则x3的系数为【考点】二项式展开【解析】含x2的项应为C(2x)(x)=10 x3,故系数为109.三角形ABC中,D是BC的中点,AB=2.BC=3.AC=4,ADAB=【考点】向量的数量积【解析】根据定理cosB+9-16则cos(B)=AD-AB=(AB+BD).AB=|ABf+BCB|cos(x-B)=
3、10.已知A=-3.-2.-1.0.1.2.3,a.bA,则a(an1+an)(an-an)+a(a-an)=0及(an+an-an)(an-an)=0得an=an=0或an+an+a=0(1)由a-a=0可得an为常数列成立,c=0满足(2)由a+a+0得=所以a2和a为方程x2+ax+(a2-c)=0的两个根所以A=a-4(a-c)0即4c-3a20带入验证B,a=2.c=24c-3a=8-12100an时n的最小值【考点】等数列与等比数列109【解析】(1)由数列a为等差数列,可设数列的公差为d.Sm=102a1-1d=an-1+(n-1)-n-(nN)5(2)由数列4。为等比数列.可设
4、数列。的公比为以之1100”22”10127即的最小值为719.有一条长为120米的步行街道OA,A是拉圾投放点似,若以O为原点OA为x轴正半抽建立平面直角坐杯系,设点B(x,O),现要建设另一座拉圾投放点仙(1,0)、两数(x)表示与点B距离最近的拉圾投放点的距离:(1)若1=60,求f(10),fo(80),fo(95),并写出fo(x)的函数解析式:(2)定义:将厂(x)与坐标抽围成的面积估计为扔垃圾的便利程度,问:垃圾投放点以要建立在何处才能比建在中点时更加便利?【考点】函效应用避【解析】k1)1点B及以,在:x轴1号f(10)=60-10=50.,(80)=60-80=20.f(95)=120-95=25:/m(x)=mnr-60.k-120,=r-60.x90 x-120.x900120-小.x120+(2)出1)号知f(x)=minx-小小k-120;2.结合其图像易得x-120.x120+12s=+20-小29)-6ww-0-0+20由世金S560).脚三-61+36002700.解得20160.故当拉投投收点.建立1(20.60)时比建中点时更加使利.6