1、衡水金卷2018届全国高三大联考理数第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 2. 记复数的虚部为,已知复数(为虚数单位),则为( )A. B. C. D. 3. 已知曲线在点处的切线的倾斜角为,则 ( )A. B. C. D. 4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,
2、据此可估计军旗的面积大约是( )学|科|网.学|科|网.A. B. C. D. 5. 已知双曲线:(,)的渐近线经过圆:的圆心,则双曲线的离心率为( )A. B. C. D. 6. 已知数列为等比数列,且,则( )A. B. C. D. 7. 执行如图的程序框图,若输出的的值为,则中应填( )A. B. C. D. 8. 已知函数为内的奇函数,且当时,记,则,间的大小关系是( )A. B. C. D. 9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为( )A. B. C. D. 10. 已知函数(,)的部分图像如图所示,其中.记命题:,命题:将的图象向右
3、平移个单位,得到函数的图象,则以下判断正确的是( )A. 为真 B. 为假 C. 为真 D. 为真11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线的对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为( )A. B. C. D. 12. 已知数列与的前项和分别为,且,若,恒成立,则的最小值是( )A. B. C. D. 第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知在中,若边的中点的坐标为,点的坐标
4、为,则_.14. 已知()的展开式中所有项的二项式系数之和、系数之和分别为、,则的最小值为_.15. 已知,满足其中,若的最大值与最小值分别为,则实数的取值范围为_.16. 在九章算术中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑中平面,则该鳖臑的外接球与内切球的表面积之和为_.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知函数,.(1)求函数的最小正周期及其图象的对称轴方程;(2)在锐角中,内角,的对边分别为,已知,求的面积.18. 如图,在四棱锥中,底面为直角梯形,其中,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给
5、予证明;(2)当时,求直线与平面所成的角的正弦值.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到表格:(单位:人)经常使用网络外卖偶尔或不用网络外卖合计男性5050100女性6040100合计11090200(1)根据表中数据,能否在犯错误的概率不超过的前提下认为市使用网络外卖的情况与性别有关?(2)现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的
6、3人中至少有2人经常使用网络外卖的概率;将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:0.150.100.050.0250.0102.0722.7063.8415.0246.63520. 已知椭圆:的左、右焦点分别为,其离心率为,短轴长为.(1)求椭圆的标准方程;(2)过点的直线与椭圆交于,两点,过点的直线与椭圆交于,两点,且,证明:四边形不可能是菱形.21. 已知函数(,),其中为自然对数的底数.(1)讨论函数的单调性及极值;(2)若不等式在内恒成立,求证:.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在平面直角坐标系中中,已知曲线的参数方程为(,为参数),以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(1)当时,求曲线上的点到直线的距离的最大值;(2)若曲线上的所有点都在直线的下方,求实数的取值范围.23. 已知函数.(1)解不等式;(2)记函数的值域为,若,证明:.