ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:1.34MB ,
资源ID:304747      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/304747.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Clifford分析中一类...正则核的奇异积分算子的性质_黄丽坤.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

Clifford分析中一类...正则核的奇异积分算子的性质_黄丽坤.pdf

1、高校应用数学学报2023,38(1):99-110Clifford分析中一类具有加权k-正则核的奇异积分算子的性质黄丽坤,盛晓娟,杨贺菊(河北科技大学 理学院,河北石家庄 050018)摘要:首先定义了Clifford分析中一类具有加权k-正则核的奇异积分算子,然后讨论了这个算子的一致有界性,给出了几个重要的不等式,并用这些不等式证明了这个算子的H older连续性,最后证明了这个算子的次可积性.这些结论为研究相关偏微分方程的边值问题奠定了基础.关键词:加权k-正则核;奇异积分算子;有界性;H older连续性;次可积性中图分类号:O174.2;O174.5文献标识码:A文章编号:1000-4

2、424(2023)01-0099-121引言W.K.Clifford1于十九世纪末创立了Clifford代数.它是一类可结合而不可交换的代数系统.20世纪初,通过对Laplace算子线性化的研究,R.Fueter2提出了Clifford分析.Clifford分析已经成为现代数学和物理学的核心工具之一,具有十分重要的理论价值和应用价值.自二十世纪六十年代以来,众多研究学者对Clifford分析进行了系统地研究,得到了丰硕的成果.1982年,以Dirac算子为基础,F.Brackx,R.Delanghe,F.Sommen3-5等人提出了正则函数,并对此函数进行了一系列的研究分析,奠定了Cliffo

3、rd分析的基础理论.T算子是一个定义在区域上的奇异积分算子,它在求解Vekua方程组6及广义解析函数理论7中起着非常重要的作用.1978 年,Hile8对Rn空间中的T算子的性质进行了讨论.随后,Gilbert9等学者对高维复空间中的T 算子的相关性质也进行了一系列研究.杨丕文10-11等人研究了四元数分析和复Clifford分析中T算子的性质,并对在复Clifford分析中T算子的相关边值问题进行了讨论.李尊凤12,杨贺菊13-15,郝毅红16,韩雪峰17和杨冠民18等人研究了Clifford分析中T算子和几类高阶奇异T算子的性质及应用.2019年,毕芳19研究了Clifford分析中具有k

4、-正则核的T算子的性质,得到了该算子在有界区域上以及在Lp,n(Rn)空间上的一些性质.本文在上述基础上,定义了Clifford分析中一类具有加权k-正则核的奇异积分算子,证明了相关的不等式并研究了该算子在有界区域上的一致有界性,H older连续性以及次可积性.收稿日期:2022-01-25修回日期:2022-08-16基 金 项 目:国 家 自 然 科 学 基 金(11871191);河 北 省 自 然 科 学 基 金(A2022208007);河 北 省 省 级 科 技 计划(21557647D)DOI:10.13299/ki.amjcu.002255100高 校 应 用 数 学 学 报

5、第38卷第1期2 预备知识设e1,e2,en是Rn的一组标准基.An(R)是以e1,e2,en,e2e3,en1en,e2e3en为基底的可结合不可交换代数.An(R)中的基元素记为:eA=e1e2eh,其中A=1,2,h 1,2,3,n且1 1 2 h n.当A=时,eA=1.任何元素a An(R)都能表示为a=AaAeA,其中aA R为实数.Clifford代数中的元素满足以下运算法则e2i=1,i=1,2,n;eiej=ejei,1 i j n.定义An(R)中的范数为|a|=(a,a)=(Aa2A)12,An(R)中元素的共轭为ei=ei.设 Rn是一个非空连通开子集,定义在中取值于A

6、n(R)的函数可表示为f(x)=AfA(x)aA,其中fA(x)为实值函数.用Fm(,An(R)表示中Cm函数的全体,即Fm(,An(R)=f|f:An(R),f(x)=AfA(x)aA,fA(x)Cm(),x .定定定义义义2.1若对任意的x1,x2,f(x)满足|f(x1)f(x2)|M1|x1 x2|0,(0 0 1),则称函数f(x):An(R)为上指标为0的H older连续函数,其中M1是与x1,x2无关的正常数.用H0表示上指标为0的H older连续函数的集合.设Lp(,An(R)表示定义在上取值于An(R)中的p次幂可积函数的集合,并在此集合上定义元素的范数为f,p=(|f(

7、x)|pdx)1p,其中p 1.注当为有界域时,有包含关系Fm(,An(R)Lp(,An(R)Lp0(,An(R),其中m 0,1 p 0.在Rn中以y为原点建立广义球坐标系xn=cos1cos2cosn2cosn1,xn1=cos1cos2cosn2sinn1,x2=cos1sin2,x1=sin1,其中x=(x1,x2,xn)Rn,=|x y|,i满足条件|i|2,i=1,2,n 2,0 n1 2.黄丽坤等:Clifford分析中一类具有加权k-正则核的奇异积分算子的性质101由文献20可知dx=|D(x1,x2,xn)D(,1,2,n2,n1)|dd1d2dn2dn1 M2n1d,(1.

8、1)其中M2为大于0的常数.定定定义义义2.29设 Rn,k Z+,若f(x)Fk(,An(R)且满足当x 时,有Dkf(x)=(|x|xDk)(f(x)=0,则称f(x)是上的加权k-正则函数.引引引理理理2.35(Hile引引引理理理)设x,t Rn,并且x=0,t=0.n(2),m(0)为整数,则有x|x|m+2t|t|m+2|x t|Pm(x,t)|x|m+1|t|m+1,其中Pm(x,t)=mk=0|x|mk|t|k=|x|m+1|t|m+1|x|t|,m 0;1,m=0.引引引理理理2.415设 Rn是一个有界区域,则当0 a n时,对于任意的x0 Rn,有|x x0|adx M3

9、,其中M3是仅与a,有关的正常数.引引引理理理2.56(Hadamard引引引理理理)设 Rn是一个有界域,n 2,若b,c满足0 b n,0 c n,则对任意的x1=x2 Rn,有|t x1|b|t x2|cdt M4|x1 x2|nbc,M4是仅与b,c有关的正常数.引引引理理理2.621若1 0,2 0且0 d 1,则有|d1 d2|1 2|d.引引引理理理2.77(Minkowski不不不等等等式式式)若f1,f2,fn Lp(G),p,则f1+f2+fnLp(G),并且f1+f2+fnp,f1p,+f2p,+fnp,.引引引理理理2.813设 Rn,=x|x+x0.若f(x+x0)是

10、在上的加权k-正则函数,则有kj=1(1)j1Hj(x)|x|xdxDj1f(x+x0)=f(x0),x0;0,x0 Rn,其中Hj(x)=Aj|x|nj,Aj=(1)j1nj1(k1)!,1 k n,0 1.3 主要结论定定定义义义3.1设 Rn是一个有界区域,f Lp(,An(R),Dj1f(x)Lp(,An(R),0 1,1 k n,1 j k,y Rn,定义(Tf)(y)=kj=1(1)j1Hj(x y)|x y|(x y)Dj1f(x)dx102高 校 应 用 数 学 学 报第38卷第1期为具有加权k-正则核的T算子,其中Hj(xy)=Aj|xy|nj,Aj=(1)j1nj1(k1)

11、!,n为Rn中单位球的表面积.定定定理理理3.2设 Rn是一个有界区域,f Lp(,An(R),Dj1f(x)Lp(,An(R),1 j k,0 n,则(Tf)(y)在上一致有界,并且满足|(Tf)(y)|M5kj=1Dj1f(x),p,其中M5是仅与n,p 及区域的大小有关的正常数.证证证取q 1,使得1p+1q=1,于是当p n时,1 q nn1.对于y ,取B(y,)=x|x y|,则有|(Tf)(y)|kj=1|Hj(x y)|x y|x y|Dj1f(x)|dxkj=1J1(B(y,)1|x y|nj+1|Dj1f(x)|dx+B(y,)1|x y|nj+1|Dj1f(x)|dx)=

12、kj=1J1(Ij1(y)+Ij2(y),其中J1=maxj=1,2,k|Aj|.因为(j 1)0,所以nn1nnj+1.又因为1 q nn1,所以有q n j+1.由H older不等式及(1.1)式可得Ij1(y)=B(y,)1|x y|nj+1|Dj1f(x)|dx(B(y,)|Dj1f(x)|pdx)1p(B(y,)|x y|(nj+1)qdx)1qM1q1Dj1f(x)B(y,),p(0n1(nj+1)qd)1q=M1q1Dj1f(x)B(y,),p(1n (n j+1)qn(nj+1)q0)1q=Jj2Dj1f(x)B(y,),p Jj2Dj1f(x),p,其中Jj2=M1q1(1

13、n(nj+1)qn(nj+1)q)1q.另外Ij2(y)=B(y,)1|x y|nj+1|Dj1f(x)|(B(y,)|Dj1f(x)|pdx)1p(B(y,)|x y|(nj+1)qdx)1qM1q1Dj1f(x)B(y,),p(L(nj+1)qn1d)1q=M1q1Dj1f(x)B(y,),p(1n (n j+1)q(Ln(nj+1)q n(nj+1)q)1q=Jj3Dj1f(x)B(y,),p Jj3Dj1f(x),p,其中Jj3=M1q1(1n(nj+1)q(Ln(nj+1)q n(nj+1)q)1q,L=maxxB(y,)|x y|.黄丽坤等:Clifford分析中一类具有加权k-正

14、则核的奇异积分算子的性质103所以有|(Tf)(y)|kj=1J1(Jj2+Jj3)Dj1f(x),p=M5kj=1Dj1f(x),p,其中M5=maxj=1,2,kJ1(Jj2+Jj3)是仅与n,p及区域的大小有关的正常数,因此(Tf)(y)在上一致有界.定定定理理理3.3设 Rn是一个有界区域.则对任意的x ,t1=t2,若|x t1|M6|x t2|,则存在Mj7使得|x t1|x t1|nj+x t2|x t2|nj+|Mj7|t1 t2|x t1|nj+,其中M6,Mj7是正常数,0 1,j=1,2,k.证证证当j=1时,由引理2.3可得|x t1|x t1|nj+x t2|x t2

15、|nj+|=|x t1|x t1|nx t2|x t2|n|t1 t2|n2k=0|x t1|n2k|x t2|k|x t1|n1|x t2|n1=|t1 t2|n1k=1|x t1|n1k|x t1|n1|x t2|nk,因为|x t1|M6|x t2|,所以1|xt2|M6|xt1|,1|xt2|nkMnk6|xt1|nk,从而|t1 t2|n1k=1|x t1|n1k|x t1|n1|x t2|nk|t1 t2|n1k=1|x t1|n1kMnk6|x t1|n1|x t1|nk=J4|t1 t2|x t1|n,其中J4=n1k=1Mnk6.当j=2,3,k时,|x t1|x t1|nj

16、+x t2|x t2|nj+|x t1|x t1|nj+x t2|x t1|j+|x t2|n|+|x t2|x t1|j+|x t2|nx t2|x t2|nj+|=I1+I2,由引理2.3可得I1=|x t1|j|x t1|x t1|nx t2|x t2|n|x t1|j|t1 t2|n2k=0|x t1|n2k|x t2|k|x t1|n1|x t2|n1=|t1 t2|n1k=1|x t1|j|x t1|k|x t2|nk.因为|x t1|M6|x t2|,所以1|xt2|M6|xt1|,1|xt2|nkMnk6|xt1|nk,从而I1|t1 t2|n1k=1|x t1|jMnk6|x t1|k|x t1|nk=J4|t1 t2|x t1|nj+.另外I2=|x t2|x t1|j+|x t2|nx t2|x t2|nj+|=|x t2|x t2|n|x t1|j|x t2|j|.104高 校 应 用 数 学 学 报第38卷第1期因为0 1,所以由引理2.6可知|(|x t1|j1)(|x t2|j1)|x t1|j1|x t2|j1|.所以I21|x t2|n1|(|x t1

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2