ImageVerifierCode 换一换
格式:PDF , 页数:12 ,大小:1.13MB ,
资源ID:3052228      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3052228.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(互联网发展对区域劳动力就业匹配的影响研究——基于人力资本—产业结构视角.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

互联网发展对区域劳动力就业匹配的影响研究——基于人力资本—产业结构视角.pdf

1、http:收稿日期:2 0 2 2-0 4-1 9。修回日期:2 0 2 2-1 2-1 6。基金项目:国家社会科学基金青年项目“数字经济背景下农民工数字素养与社会融合研究”(2 1 C R K 0 1 1);教育部人文社会科学青年项目“流动人口对我国城镇居民社会信任影响的效应与机制研究”(2 0 Y J C 8 4 0 0 4 2)。作者简介:王春凯,男,西北农林科技大学人文社会发展学院副教授,研究方向为互联网经济与劳动力就业;许珍珍,女,通信作者,西北农林科技大学黄河流域乡村振兴研究与评估中心特聘研究员,研究方向为劳动力就业,电子邮箱为x u j i a x i 9 31 6 3.c o

2、m。感谢杨云彦、朱明宝及匿名评审专家提出的宝贵建议,文责自负。D O I:1 0.2 0 0 6 9/j.c n k i.D J K X.2 0 2 3 0 4 0 1 0互联网发展对区域劳动力就业匹配的影响研究 基于人力资本产业结构视角王春凯1,许珍珍21.西北农林科技大学 人文社会发展学院,陕西 杨凌7 1 2 1 0 02.西北农林科技大学 黄河流域乡村振兴研究与评估中心,陕西 杨凌7 1 2 1 0 0开放科学(资源服务)标识码(O S I D)摘要:推动全国劳动力市场统一和提升劳动力就业配置效率是经济发展的持久动力。基于2 0 0 32 0 1 8年省级面板数据,考察互联网发展对就业

3、中劳动力人力资本供给与产业结构需求间匹配的影响与机制。研究发现:(1)互联网对区域劳动力就业匹配的影响系数为正且显著,说明互联网促进了区域劳动力就业匹配;(2)互联网通过促进人口跨区域流动、产业结构升级的作用机制提升了区域劳动力就业匹配;(3)互联网对区域劳动力就业匹配的影响具有明显的基于经济发展水平的门槛特征,突破门槛后劳动力池效应更加明显,互联网的促进作用明显跃升;(4)随着互联网发展阶段的递进,互联网网络溢出效应的增强对区域劳动力就业匹配产生更加显著的影响。东中部地区互联网的劳动力就业匹配效应最为明显,西部地区尚不突出。因此,应从加强网络基础设施建设、完善互联网就业信息平台以及强化互联网

4、与农业和制造业的深度融合等方面,进一步提高劳动力就业匹配效率,助力中国区域经济社会走向共同富裕。关键词:互联网发展;劳动力流动;就业匹配;人力资本;产业结构升级;人口质量红利文献标识码:A 文章编号:1 0 0 2-2 8 4 8-2 0 2 3(0 4)-0 1 2 7-1 2中国区域经济社会发展水平呈现出明显的阶梯形特征,主要表现为区域产业布局与人力资本空间分布的不均衡。中国人力资本报告2 0 2 0 显示,人力资本存量排名前十位的省份依次为山东、广东、河南、江苏、河北、浙江、四川、安徽、湖北、湖南,中西部地区占比达6 0%。沿海发达地区集聚了大量产业却没有足够的人力资本存量,要素的空间错

5、配造成了中国区域经济发展的效率损失。随着产业在区域间的转移和升级,东部地区产业结构由中低端制造业向高端制造业和服务业升级,进一步强化了对高技术专业人才和知识人才的需求;而中西部地区产业结构由农业向制造业和服务业升级,对工业技术工人和低端服务人员的需求更加迫切。区域间劳动力人力资本结构供给与产业结构对劳动力素质需求的就业匹配问题亟待解决。劳动力人力资本存量只是为经济社会发展提供了人口机遇期,只有人力资本与嵌入产业结构的工作岗位技能需求结构相匹配才能将“人口机遇”转变为“人口红利”1。实现劳动者人力资本供给与工作岗位需求之间匹配,解决区域劳动力结构性就业难题,使得劳动力市场供给方和需求方得到充分匹

6、配,形成人口结构性质量红利,是中国未来持续发挥人口红利的关键。目前,关于劳动力就业匹配的影响因素主要着眼于两个视角。一是从要素流动的视角进行研究,认为劳动力在区域间或行业间流动畅通是就业匹配的关键。王春杨等2研究表明,高铁开通改变了人力资7212023 年 7 月 第 45 卷 第 4 期 http:本的流向和空间格局,优化了人力资本的空间分布。李静等3认为信息共享和知识传递增强了劳动力跨区域流动的能力,降低了流动的成本进而有助于提升就业匹配度。而行政垄断4和城乡二元户籍制度5以及国有企业较高的进入壁垒6则阻碍了劳动力在区域间和行业间的充分流动,不利于就业匹配效率的提升。二是从产业结构调整以及

7、劳动力受教育程度变迁的视角来探讨就业匹配问题。产业在区域间转移与人力资本匹配密切相关7,服务业布局优化改善了人力资本的配置效率8,而中国过度教育的时期效应则对就业匹配时空演化产生了直接影响9。张桂文等1 0研究指出需要从人力资本投资和产业结构升级两个方面采取措施,共同推进人力资本存量与产业结构演进的动态匹配。少量文献从区域的视角研究了劳动力区域间的就业匹配,发现市场化水平、交通基础设施改善了区域间和部门间人力资本与产业结构的匹配效率1 1-1 2,而地方财政支出和信息化程度是造成人力资本匹配在不同区域间存在差异的主要原因1 3。制度性的劳动力市场分割造成劳动力的需求在沿海地区和城市,劳动力的供

8、给在中西部农村,形成区域间劳动力供给与产业结构需求的错配1 4。综上所述,已有研究较为深入地探讨了劳动力就业匹配的影响因素,取得了丰富的研究成果,但鲜有研究从区域的视角对就业中劳动力人力资本与产业结构的匹配效应展开研究,特别是在中国区域产业分布与人口分布不均衡的情况下,区域劳动力就业匹配效率是释放劳动力潜力、推动人口红利持续发挥的关键。区域劳动力就业匹配的关键在于就业信息的畅通从而促进劳动力的跨区域流动,以及区域产业结构升级对劳动力人力资本产生的派生需求。在互联网快速发展的时代,互联网本身兼具信息传播媒介以及推动产业升级的双重属性,因此在要素流动层面和产业结构变迁层面皆会对区域劳动力就业匹配产

9、生影响。互联网发展对区域劳动力就业匹配产生了怎样的影响,在不同经济发展阶段有何特征,以及通过何种机制实现劳动力在区域间的就业匹配,这些问题对于进一步推动全国劳动力市场的统一和提升劳动力配置效率尤为关键。鉴于此,本文利用面板数据的时间属性与空间属性,采用2 0 0 32 0 1 8年省级面板数据,研究互联网发展对区域就业中人力资本结构与产业结构的匹配效应,以及互联网对区域劳动力就业匹配的门槛效应和中介机制。一、理论机制与研究假说互联网技术具有自身的特性。一方面,互联网可以突破时空限制,具有促进信息重组与信息整合的传播特性。互联网可以有效打破地理环境所带来的空间阻碍,促进要素跨区域流动和生产要素在

10、特定空间内集聚1 5。互联网通过跨越区域、行业的边界限制,将各地区的人才、资金、技术等创新要素进行再整合、再布局,促进资源在区域间的重新配置和组合,实现区域的创造性发展1 6。另一方面,互联网与传统产业相结合,改变了资源的配置方式,创新和升级了生产要素的组合,并借助去中介化直接连接生产者和消费者,降低了交易过程中的协商成本和契约成本1 7,有助于推动产业结构升级。相对于传统技术,互联网在信息传播方面具有独特的快速性、全面性以及穿透性,引发区域内生产要素的优化配置和重组,提升了整体的区域生产环境,改善了劳动力市场供给方和需求方的信息不对称,促进区域内劳动力的供需匹配。基于上述分析,本文提出以下假

11、设:假设1:互联网发展对区域劳动力就业匹配产生显著影响。中国区域经济发展水平和发展阶段呈现出明显的不均衡性。当经济较为发达时,区域内异质性人力资本及产业类型呈现出多样性,区域内部形成劳动力池效应,使得劳动力本身因产业类型多样化而找到更加合适的工作;用人单位则因人力资本的异质性而找到更加合适的工人,实现了劳动力供给与产业需求的匹配。改革开放以来,东部地区产业的率先发展带来了大量的就业机会,劳动力源源不断由中西部地区向东部地区流动,在东部地区形成了一个巨大的劳动力池。劳动力池效应降低了企业和劳动力的搜寻成本,市场规模的扩大和产业结构的高级化进一步改善中国区域劳动力的配置效率,成为东部经济快速增长的

12、一个重要原因。中西部地区人口集聚效应较弱,劳动力池效应发挥不明显,人力资本结构与产业结构的耦合匹配度在东部明显高于中西部地区1 8。因此,互联网对劳动力就业匹配的影响呈现出明显的阶段性和区域差异性,只有当地区经济发展到一定程度时,随着劳动力池效应更加明显,其能够发挥821 2023 年 7 月 第 45 卷 第 4 期http:真正的网络扩散效应,使得区域内就业信息可以互通有无,提升空间内异质性人力资本和就业岗位的匹配。基于上述分析,本文提出以下假设:假设2:互联网对区域劳动力就业匹配的影响具有经济门槛效应与区域异质性,区域经济发展水平越高,对劳动力就业匹配的影响越显著。互联网作为信息传播的载

13、体能够快速、有效、全面地传递劳动力市场的就业信息,推动劳动力跨区域流动就业,带来区域劳动力就业匹配的提升。中国区域产业结构分布极不均衡,大量的就业机会主要集中在东部发达地区,劳动力跨区域流动就业成为中国区域就业增长的显著特点。互联网传播即时性和渗透性使得就业市场更加透明化,有效弱化了地理空间的阻隔,促进劳动力由中西部地区向东部地区流动、由农村向城市地区的跨区域流动。劳动力流动优化了人力资本的区位分布,为区域产业结构高级化提供必要的人力资本支撑1 9。不同空间内的企业和劳动力通过互联网平台进行有效的连接与匹配,带来劳动力空间匹配效率的提高。与此同时,互联网发展不仅有助于跨区域流动人次的增加,而且

14、增强了流动的能力,使得劳动力跨区域流动的半径更大,劳动力流动在很大程度上改善了人力资源的空间配置结构和人岗匹配效率2 0。因此,互联网使劳动者流动频率加大、流动方向明确、流动半径扩大,有助于促进区域劳动力就业匹配。基于上述分析,本文提出以下假设:假设3:互联网发展通过促进人口跨区域流动提升区域劳动力就业匹配。互联网作为一种技术进步能够促进区域产业结构升级,延长产业链,增加新的就业机会,提升中国各个区域内劳动者人力资本与工作岗位的匹配度。互联网与传统产业深度融合,推动了传统产业转型升级和经济发展方式转变,重构了劳动力市场供需双方的关系。互联网促进了产业结构由第一产业向第二、三产业升级,特别是对于

15、农业和制造业而言,互联网促进了产业链的延伸和升级,扩大了劳动力的就业市场,使劳动力能够选择与自身人力资本素质相匹配的就业岗位机会。同时,互联网在各个区域内部促进产业结构升级,从而带来就业空间配置效率的提升。东部地区集聚了大量的高端人才,东部地区的产业结构由中低端制造业向高端制造业和服务业升级有助于实现人力资本结构高级化与产业结构高级化的空间耦合。而中西部地区由于农业剩余人口较多,产业结构的低端化无法为劳动力提供充足的就业岗位,造成劳动力的就业匹配效率较低。互联网的快速发展加快了中西部地区产业结构由农业向工业和服务业升级,进一步释放了农业中的剩余劳动者,促进劳动力在产业结构内的梯度转移。例如,农

16、业劳动力逐步向制造业转移,工业劳动力向服务业转移,提高了劳动力在行业间的配置效率,改善了劳动力人力资本匹配度。互联网通过提高各个区域内产业结构的比较优势改善了区域内部劳动力配置效率,实现区域整体劳动力就业匹配效率的改善。基于以上分析,本文提出以下假设:假设4:互联网发展通过推动区域产业结构升级提升劳动力就业匹配。二、研究设计(一)模型设定为检验互联网发展对区域劳动力就业匹配的影响,本文构建的基本模型如下:M a ti t=0+1I n ti t+2Xi t+t+i+i t(1)其中,下标i和t分别表示省份和时间;M a ti t为被解释变量,表示区域劳动力就业匹配;I n ti t为核心解释变

17、量,表示区域互联网发展程度。由于区域劳动力就业匹配与市场规模、工会保障、劳动纠纷、工资水平、失业水平、政府干预以及经济发展水平等变量存在相关性,本文控制了一组省份特征变量Xi t。t和i分别表示时间固定效应和省份个体效应,i t代表误差项。互联网发展对区域劳动力就业匹配可能存在非线性的关系,在不同经济发展阶段的地区,互联网对区域劳动力就业匹配的影响存在显著的差异性。为了避免人为划分样本区间带来的主观判断偏误,本文借鉴H a n s e n提出的门槛回归模型,采用门槛回归模型对互联网的经济发展阶段的门槛效应进行实证分析。H a n s e n面板门槛模型能够捕捉经济系统的结构性突变因素,且能够处

18、理固定效应问题。本文在此建立以地区经济发展水平为门槛变量、以区域劳动力就业匹配度为被解释变量的门槛回归模型:921王春凯,许珍珍 互联网发展对区域劳动力就业匹配的影响研究 http:M a ti t=0+h1I n ti tR g d pi t1 +h2I n ti t1R g d pi t2 +h nI n ti tn-1R g d pi tn +iXi t+i t(2)其中,R g d p为地区经济发展水平,用人均G D P衡量,为门槛变量。1,2,n为n+1个门槛区间下n个门槛值,h1,h2,h n为不同门槛区间下的估计系数。在无法确定具体的门槛数量情况下,公式设定为多门槛变量模型。(二

19、)变量设定1.被解释变量:区域劳动力就业匹配特定区域内劳动力结构和产业结构在一定时间内是相对稳定的,区域内劳动力人力资本结构与产业结构的匹配程度直接影响区域生产效率和经济发展。由于人口交替进入或者退出劳动力市场,以及区域之间人口流动和迁移,劳动力人力资本结构在动态中实现与区域产业结构的匹配。在市场力量作用下,中国第二、三产业发展主要集中在沿海地区,并在当地产生了大量的就业机会。但中西部地区此时劳动力充足而就业机会缺乏,引致劳动力跨区域流动寻求就业。跨区域流动就业意味着不同区域劳动力就业匹配存在差异性。不同地区产业结构类型与地区人力资本结构匹配度不同,导致就业匹配在区域层面上呈现出梯度分布。本文

20、基于人力资本产业结构匹配视角提出区域劳动力就业匹配概念,将区域劳动力就业匹配界定为特定区域内产业结构与就业中人力资本结构的匹配协调程度。就业中人力资本结构的子系统与就业结构和产值结构关联互动,通过系统耦合的定量测算出区域人力资本结构与产业结构中的空间互动关系与动态变化,研究二者之间的匹配协调程度1 0,2 1。由于就业中人力资本的结构分布与产业的产值结构和就业结构分属两个不同的系统,因此本文采用耦合匹配度刻画就业中人力资本结构与产业结构间的匹配程度。2.核心解释变量与门槛变量关于互联网发展水平,本文采用区域互联网综合发展指数进行度量。综合已有研究对互联网发展的相关测度指标以及数据的可得性,本文

21、从互联网应用和产出角度选择了互联网普及率、互联网相关从业人员、互联网相关产出和移动互联网用户数四个维度的指标。其中,互联网普及率采用每百人互联网人数代理,互联网相关从业人员采用计算机服务和软件业从业人员占单位从业人员比重代理,互联网相关产出采用人均电信业务总量代理,移动互联网用户数采用每百人移动电话数代理。在计算过程中先将四个指标进行标准化处理,在此基础上采用主成分分析方法综合成一个指标代理互联网综合发展指数。门槛变量为地区经济发展水平和阶段,采用地区人均G D P的对数来衡量。3.控制变量为提高回归分析的精确性,本文将市场规模、工会保障、劳务纠纷、工资水平、失业水平、政府干预、经济发展水平等

22、作为控制变量。(三)数据来源与描述性分析互联网相关数据,各省份第一、二、三产业产值比重来源于2 0 0 42 0 1 9年 中国城市统计年鉴。受教育程度占比数据来源于2 0 0 42 0 1 9年 中国劳动统计年鉴 中统计的就业人员中受教育程度的占比。各省份第一、二、三产业的就业比重来源于2 0 0 42 0 1 9年各省份统计年鉴,就业统计口径为全社会从业人员。控制变量来源于2 0 0 42 0 1 9年 中国统计年鉴 中国城市统计年鉴 和 中国劳动统计年鉴。为消除通货膨胀的影响,以2 0 0 0年为基期,对模型中的经济发展水平、市场规模等经济变量数据通过历年G D P平减指数进行折算。最终

23、研究样本为2 0 0 32 0 1 8年中国3 0个省份共4 8 0个样本。变量描述性统计结果见表1。031 2023 年 7 月 第 45 卷 第 4 期 本文研究采用面板数据,包括时间和空间两个维度,因此耦合匹配模型更能分析出产业结构与劳动力人力资本结构的动态匹配过程。由于此测算为经典耦合系统匹配模型的测算,不再赘述测算过程,留存备索。由于数据缺失问题,样本地区不包括中国西藏、台湾、香港和澳门。http:表1 变量的描述性统计结果变量变量含义观测值数均值标准差最小值最大值区域劳动力就业匹配区域就业中人力资本结构与产业结构匹配系数4 8 00.4 9 30.1 4 50.1 9 60.9 2

24、 4互联网发展互联网综合发展指数取对数4 8 0-1.4 5 80.7 2 5-3.3 1 40.1 0 1市场规模社会零售商品总量,千亿元4 8 06.2 7 36.6 0 00.1 6 13 3.6 0 5工会保障工会人员数除总就业人数4 8 00.3 1 50.1 1 80.0 9 80.6 8 3劳务纠纷劳动争议人数除总就业人数4 8 01.1 9 31.3 0 10.0 7 06.6 6 3工资水平就业人员平均工资对数值4 8 01.1 9 50.6 8 0-0.6 4 52.4 8 4失业水平失业率,%4 8 03.5 3 70.6 7 01.3 9 04.9 0 0政府干预政府一

25、般财政预算支出占G D P比重4 8 00.2 5 50.1 8 60.0 8 11.0 0 4经济发展水平人均G D P对数值4 8 01.0 6 90.7 3 0-0.5 6 92.4 9 1三、互联网发展对区域劳动力就业匹配的影响为了提高回归的准确性,当模型存在异方差或自相关问题时,采用聚类稳健标准误差进行回归,以保证模型回归估计的一致性。本文选择双向固定效应进行回归,同时控制个体效应和时间效应,有助于减少时间层面的遗漏变量,提高回归结果的准确性。(一)基本回归分析本文在此采用逐步回归法对回归结果进行分析,结果见表2,可以看出,互联网对区域劳动力就业匹配的影响系数为正且显著,说明互联网发

26、展显著促进了区域劳动力就业匹配。互联网发展之所以能够提高区域间人力资本结构与产业结构的就业匹配程度,原因在于:一方面互联网发展有助于消除劳动力市场的信息不对称,促进就业信息的跨区域传播。互联网提升了人力资本在区域间和行业间的流动性,增表2 互联网发展对区域劳动力就业匹配的影响估计结果变量被解释变量:区域劳动力就业匹配(1)(2)(3)(4)(5)(6)(7)(8)互联网发展水平市场规模工会保障劳务纠纷工资水平失业水平政府干预经济发展水平常数项R2观测值数 0.0 6 5*0.0 6 3*0.0 5 0*0.0 4 9*0.0 6 0*0.0 6 0*0.0 6 0*0.0 5 8*(0.0 1

27、 7)(0.0 1 5)(0.0 1 6)(0.0 1 6)(0.0 1 9)(0.0 1 9)(0.0 1 9)(0.0 2 3)0.0 0 4*0.0 0 3*0.0 0 3*0.0 0 3*0.0 0 3*0.0 0 3*0.0 0 3*(0.0 0 1)(0.0 0 1)(0.0 0 1)(0.0 0 1)(0.0 0 1)(0.0 0 1)(0.0 0 1)0.2 1 2*0.2 1 5*0.2 1 9*0.2 2 1*0.2 2 8*0.2 2 3*(0.0 7 9)(0.0 8 0)(0.0 7 9)(0.0 8 1)(0.0 7 9)(0.0 7 0)-0.0 0 3-0.0

28、0 4-0.0 0 4-0.0 0 4-0.0 0 3(0.0 0 4)(0.0 0 4)(0.0 0 4)(0.0 0 4)(0.0 0 4)-0.0 7 2*-0.0 7 1*-0.0 7 2*-0.0 7 4*(0.0 3 5)(0.0 3 4)(0.0 3 4)(0.0 3 6)0.0 0 40.0 0 30.0 0 4(0.0 1 0)(0.0 1 0)(0.0 1 1)0.0 2 30.0 2 4(0.0 7 0)(0.0 7 0)0.0 0 9(0.0 4 9)0.6 7 9*0.6 6 8*0.5 9 4*0.5 9 1*0.6 0 6*0.5 9 2*0.5 8 6*0.5

29、7 9*(0.0 4 5)(0.0 4 2)(0.0 5 1)(0.0 5 1)(0.0 5 4)(0.0 7 4)(0.0 7 0)(0.0 8 5)0.4 2 80.4 7 40.5 0 20.5 0 30.5 1 30.5 1 30.5 1 40.5 1 44 8 04 8 04 8 04 8 04 8 04 8 04 8 04 8 0注:1.()内为省份聚类稳健标准误。2.*、*和*分别表示在1%、5%和1 0%的水平上显著。3.固定效应已控制。131王春凯,许珍珍 互联网发展对区域劳动力就业匹配的影响研究 http:强了劳动力的就业搜寻半径,使劳动力通过跨区域流动搜寻到适合自身素质的

30、工作岗位。另一方面,互联网发展有助于促进产业结构高级化,使得产业结构与整体的人力资本提升相匹配。更为重要的是产业结构高级化在区域内部具有明显的结构效应,例如中西部地区产业结构升级实现了地区内第一产业向第二产业和第三产业转化升级,释放了农业中的过剩劳动力,有助于提高中西部地区产业结构与人力资本存量的匹配度。而东部地区本身人力资本结构日益高级化,且吸引了中西部地区大量的高素质人才,东部地区产业结构升级有助于与高级人力资本结构相匹配。由此可见,互联网发展有利于促进中国各个区域内就业中人力资本结构与产业结构的就业匹配。(二)门槛效应分析互联网对区域劳动力就业匹配可能会受到地区经济发展水平和阶段的门槛效

31、应的影响。随着经济发展水平的不断提高,劳动力池效应更加明显,加上互联网的网络扩散特性,导致当经济发展到更高的阶段后,互联网将会对区域劳动力就业匹配产生更加明显的影响。因此,由于不同区域和不同时间各个地区处于不同的经济发展阶段,导致互联网对区域劳动力就业匹配的作用是非线性的,可能存在门槛效应。为验证互联网对区域劳动力就业匹配在不同经济发展阶段影响的差异性,建立门槛效应模型进行分析。首先检验门槛效果是否显著。依次按照不存在门槛、存在1个门槛、存在2个门槛、存在3个门槛展开分析,结果见表3,可以发现,单一门槛在1 0%的水平上显著,双重门槛在5%的水平上显著,自抽样P值分别为0.0 7 3和0.0

32、4 3,三重门槛不显著。因此,双重门槛模型适合本文的分析。表3 经济发展水平为门槛变量的门槛效应分析结果门槛抽样次数F值P值门槛值123不同显著性水平临界值1%5%1 0%单一门槛3 0 02 7.4 7*0.0 7 31.8 9 52 4.0 7 92 9.5 1 44 0.8 0 1双重门槛3 0 02 3.5 3*0.0 4 31.8 9 52.0 1 53 2.1 8 82 2.5 2 31 8.3 9 2三重门槛3 0 01 6.3 20.7 6 71.8 9 52.0 1 50.7 7 66 2.3 6 74 8.3 3 64 1.7 6 1注:*和*分别表示在5%和1 0%的水平

33、上显著。当经济发展水平作为门槛时,双重门槛模型对应的两个门槛值分别为1.8 9 5和2.0 1 5,表示地区人均G D P发展的第一门槛值和第二门槛值分别为1.8 9 5万元和2.0 1 5万元。根据两个门槛值将样本分为经济发展低水平(R g d p1.8 9 5)、中等水平(1.8 9 52.0 1 5)三种类型。由表4可知,以经济发展水平为标准,中国大部分省份在2 0 0 9年之前处于低水平的发展区间,2 0 0 9年后经济迅速发展,此后大部分省份处于高水平发展期间,经济换挡的周期较快。因此,随着时间的推进,互联网的时期效应愈加明显,对区域劳动力就业匹配的影响效应随时间演化逐渐加强。表4

34、不同年份各个区域经济发展类型样本数情况类型2 0 0 3年2 0 0 5年2 0 0 7年2 0 0 9年2 0 1 1年2 0 1 3年2 0 1 5年2 0 1 7年2 0 1 8年低水平2 62 21 8710000中等水平122320000高水平361 02 02 73 03 03 03 0合计3 03 03 03 03 03 03 03 03 0注:笔者基于样本原始数据划分。本文以地区经济发展水平(人均G D P)为门槛变量建立双重门槛模型,实证分析互联网对区域劳动力就业匹配的门槛效应。回归结果显示,当经济发展水平处于低发展阶段时,互联网对区域劳动力就业匹配的回归系数为0.0 4 5

35、,且在1 0%的水平上显著,说明互联网发展能够提高劳动力的区域劳动力就业匹配,促进就业中人力资本结构与产业结构的匹配。在经济发展水平处于中等水平时,互联网发展对区域劳动力就业匹配的回归系数为0.0 6 6,且在5%的水平上显著,说明随着经济发展水平的提高,互联网231 2023 年 7 月 第 45 卷 第 4 期 中国人力资本报告2 0 2 0 显示,1 9 8 52 0 1 8年中国人力资本总量增长1 1.2 倍,人力资本总量的年均增长率为7.8%。http:对劳动力人力资本结构与产业结构的就业匹配效应更加明显。当经济处于高发展水平时,互联网发展对区域劳动力就业匹配的回归系数为0.0 8

36、9,且在1%的统计水平上显著。由此可见,随着经济发展水平的不断提高,互联网发展对区域劳动力就业匹配的影响效应不论是在经济显著性还是在统计显著性上都有很大的提高,即经济发展水平越高,互联网发展对区域内人力资本结构与产业结构的匹配效应越明显。主要原因在于地区经济发展水平高,大量的企业和劳动力集聚在一起,在区域内逐渐形成劳动力池效应。经济发展水平高,不同的生产单位和异质性人力资本集聚在一起,减少了劳动力和用人单位的搜寻成本,使得劳动力人力资本供给和产业需求能够更加有效匹配。因此,当地区经济发展水平较高时,在互联网的影响下,区域内各个产业和劳动力能够互联互通,提升了区域内劳动力人力资本结构和产业结构的

37、就业匹配程度。由此可以判断,互联网对区域劳动力就业匹配的影响是非线性的,存在经济发展水平的门槛效应。(三)内生性处理与稳健性检验1.内生性处理:工具变量法内生性的产生可能有以下几个方面的原因。一是互联网发展水平和区域劳动力就业匹配可能内生于宏观经济变量,互联网的投资和使用并不是随机的,而是与收入水平等社会经济因素密切相关。本文对宏观经济变量进行了有限的控制,可能存在遗漏变量而造成的内生性问题。二是互联网发展可能与区域劳动力就业匹配呈现出双向因果的关系。本文已经分析了互联网的发展有效促进了区域劳动力就业匹配,但劳动力的就业匹配也可能会促进互联网的发展。比如就业匹配度高的地方,其生产效率高,可能促

38、进互联网信息技术的应用和发明技术的提高,推动区域互联网的发展。因此,本文使用工具变量法对模型可能存在的内生性问题进行处理。工具变量的选择需要满足相关性和外生性两个条件,本文选择各地区地形起伏度作为互联网的工具变量。一方面,地形起伏度作为工具变量满足相关性条件。地形起伏度会影响网络基础设施的建设,不仅会增加网络基础设施的建设成本,还会影响宽带网络的信号质量,进而对网络基础设施的运行效率产生影响2 2。另一方面,地形起伏度满足外生性假设。地形起伏度作为自然地理变量,与经济社会因素无关,不会直接影响产业结构与人力资本结构,符合工具变量的外生性假设。因此,采用地形起伏度作为互联网的工具变量。本文研究采

39、用的数据为均衡面板数据,只采用各省份地形起伏度作为工具变量会因为固定效应模型的应用而出现难以度量的问题。本文借鉴N u n n等2 3-2 4的设置方法,在此构造各个省份地形起伏度(与个体变化有关)分别与上一年的全国互联网普及率(与时间有关)的交互项,作为各个省份互联网发展水平的工具变量。工具变量的第一阶段回归结果显示:地形起伏度与上一年全国互联网普及率交互项的系数为0.0 0 1,且通过了5%的显著性水平检验,表明地形起伏度与互联网发展水平高度相关;同时第一阶段的F值远大于1 0,表明不存在弱工具变量问题。第二阶段的回归结果显示:互联网发展水平的系数为0.4 1 0,且通过了5%的显著性水平

40、检验,表明在解决内生性问题之后,互联网发展对区域劳动力就业匹配依然呈显著正影响,与基本回归结果保持一致,因此本文回归结果是稳健的。2.稳健性检验:互联网分类变量单独回归本文采用更换互联网发展水平的测度方法进行稳健性检验。上文采用的是互联网综合发展指数作为自变量,在此将互联网发展指数的四个分变量 互联网宽带普及率、移动互联网、互联网从业人员、互联网产出规模分别进行回归。回归结果如表5所示,除互联网从业人员和互联网产出规模外,互联网普及率和移动互联网皆显著促进了劳动力就业匹配。在此也说明目前对于劳动力就业匹配主要还是通过331王春凯,许珍珍 互联网发展对区域劳动力就业匹配的影响研究参见:游珍,封志

41、明,杨艳昭.中国地形起伏度公里网格数据集E B/O L.(2 0 1 8-0 5-0 1)2 0 2 1-0 6-1 0.h t t p s:/w w w.g e o d o i.a c.c n/W e b C n/d o i.a s p x?I d=8 8 7.此处上一年指2 0 0 32 0 1 8区间年份对应的2 0 0 22 0 1 7区间年份,因为全国互联网普及率的变化并不会对省级之间的就业匹配产生影响,所以交互项后仍然符合工具变量的假设。http:互联网的信息渠道和技术效应来促进了就业匹配度的提高。互联网宽带普及率和移动互联网的应用对个体或企业而言主要发挥着重要的信息渠道和技术赋能

42、作用,互联网的信息渠道效应有助于消除劳动力市场的信息不对称,增强劳动力的学习效应,提高劳动力的跨区域流动能力和人力资本水平。同时,互联网技术赋能效应能够增强企业的就业信息筛选能力,推动产业结构升级,从而提高劳动力市场人力资本的配置效率。这也从侧面论证了本文互联网发展对劳动力就业匹配的路径机制。表5 稳健性检验:互联网分类变量单独回归估计结果变量被解释变量:就业匹配(1)(2)(3)(4)互联网宽带移动互联网互联网产出规模互联网相关从业人员常数项R2观测值数 0.0 3 4*(0.0 1 0)0.0 6 9*(0.0 2 5)0.0 2 4(0.0 1 6)-0.0 1 2(0.0 1 5)0.

43、4 7 2*0.3 7 9*0.4 6 4*0.4 2 1*(0.0 5 6)(0.0 4 4)(0.0 6 4)(0.0 5 5)0.5 1 40.5 1 60.4 9 80.4 9 04 8 04 8 04 8 04 8 0注:1.()内为省份聚类稳健标准误。2.*和*分别表示在1%和5%的水平上显著。3.固定效应已控制,控制变量估计结果留存备索。(四)异质性分析1.分发展阶段 门槛效应分析发现,在2 0 0 9年左右互联网对区域劳动力就业匹配影响效应逐渐增强。本文以2 0 1 0年作为时间划分的节点,分析不同时间阶段互联网对区域劳动力就业匹配影响的异质性。从表6的回归结果可知,分阶段来看

44、,2 0 1 0年后,互联网对区域劳动力就业匹配发挥着显著的影响,而在2 0 1 0年之前影响并不显著。这也进一步验证了上文经济门槛效应的存在。在2 0 1 0年之前,无论是互联网发展水平还是经济发展阶段都处于低水平,互联网的溢出效应和劳动力池效应并不明显,导致互联网对区域劳动力就业匹配的效应没有凸显。随着时间的推移,互联网加快发展和经济进入新的更高的发展阶段,互联网的溢出效应更加明显,有助于提升区域内就业中人力资本结构和产业结构的匹配,推动区域劳动力就业匹配效率的提升。2.分区域中国东、中、西部三大区域的互联网发展水平、经济发展阶段等方面存在明显的差距,互联网在各个区域的溢出效应可能有所不同

45、,从而对区域劳动力就业匹配存在差异性的影响。互联网发展对中国东、中、西部区域劳动力就业匹配的回归结果见表7。分区域来看,互联网发展对东部地区和中部地区的区域劳动力就业匹配呈显著的正向影响,对西部地区虽然呈正向影响,但是在统计上并不显著。表6 互联网对区域劳动力就业匹配的发展阶段异质性分析结果变量被解释变量:区域劳动力就业匹配(1)2 0 0 32 0 1 0年(2)2 0 1 12 0 1 8年互联网发展水平常数项R2观测值数0.0 2 5 0.0 6 0*(0.0 2 8)(0.0 2 9)0.3 7 9*0.6 9 1*(0.0 9 7)(0.0 7 0)0.1 9 70.1 7 82 4

46、 02 4 0 注:1.()内为省份聚类稳健标准误。2.*和*分别表示在1%和5%的水平上显著。3.固定效应已控制,控制变量估计结果留存备索。表7 互联网发展对劳动力就业匹配的区域异质性分析结果变量被解释变量:区域劳动力就业匹配东部地区中部地区西部地区互联网发展水平常数项R2观测值数 0.0 7 5*0.1 4 2*0.0 1 9(0.0 3 5)(0.0 5 9)(0.0 4 4)0.5 4 8*0.7 1 8*0.3 7 1*(0.1 3 8)(0.2 3 1)(0.1 4 4)0.6 5 10.6 4 50.4 8 41 7 61 2 81 7 6 注:1.()内为省份聚类稳健标准误。2

47、.*、*和*分别表示在1%、5%和1 0%的水平上显著。3.固定效应已控制,控制变量估计结果留存备索。431 2023 年 7 月 第 45 卷 第 4 期划分依据来源于国家统计局。东部地区包括北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东、海南1 1个省份,中部地区包括山西、吉林、黑龙江、安徽、江西、河南、湖北、湖南8个省份,西部地区包括内蒙古、广西、重庆、四川、贵州、云南、西藏、陕西、甘肃、青海、宁夏、新疆1 2个省份。http: 互联网发展对区域劳动力就业匹配的区域差异主要在于互联网具有明显的网络溢出效应。相对于西部地区而言,东部和中部地区互联网水平的发展阶段更高,因此互联网

48、发展的网络效应更加明显,特别是在区域间、城乡间和行业间形成高密集的空间联系和信息共享,使得知识、技术以及人才等传输更加便利,推动了人力资本在区域间、城乡间以及行业间的流动性。与此同时,互联网对区域产业升级具有明显的地区差异,其显著促进了东部和中部地区的产业升级,但对西部地区产业升级作用较小2 5。因此,互联网对区域劳动力就业匹配在不同区域内形成异质性的影响效应。四、影响机制分析基于前文的理论机制分析,本文将人口跨区域流动、区域产业结构升级作为中介变量,构建中介模型进行检验。(一)中介模型检验中介效应的检验步骤为:首先,将区域劳动力就业匹配作为被解释变量,将互联网发展综合指数作为解释变量进行回归

49、;其次,将区域人口流动和区域产业结构升级等中介变量分别作为被解释变量,互联网发展综合指数作为解释变量进行回归;最后,将互联网综合发展指数和中介变量同时纳入回归模型,观察二者对区域劳动力就业匹配的影响。M为中介变量,若系数1、1和1皆显著,表明中介效应存在。人口流动数据来源于2 0 0 32 0 1 9年 中国统计年鉴,其中人口数据为常住人口,这样各省份净迁移人口数就涵盖了包括非户籍迁移和户籍迁移两种迁移数的总和,更符合实际跨区域流动就业中存在的户籍迁移和非户籍流动的两种就业模型。人口流动绝对量本身可能受到地理空间尺度及自身人口规模大小的影响,采用相对量更能反映一个地区人口流动的强度2 6。因此

50、,本文将采用相对量来衡量人口迁移情况。人口净迁入率=当年年末常住人口总量-去年年末常住人口总量(1+当年人口自然增长率)/当年常住人口总量。净迁移率为正表示人口迁入,为负表示人口迁出。区域产业结构升级的主要表现为第三产业、第二产业产值比重越来越突出,第一产业产值比重越来越小。以往采用第三产业与第二产业产值比重来衡量产业结构忽略了第一产业的作用,特别是中西部地区第一产业占比仍然较大。由于本文主要考虑的是第一、第二以及第三产业的产业结构递进演化情况,因此本文采用包含第一、二、三产业的产业结构升级系数进行衡量。具体测量方法为,产业结构升级系数=i n d11+i n d22+i n d33。其中,i

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2