ImageVerifierCode 换一换
格式:PDF , 页数:14 ,大小:5.84MB ,
资源ID:3062065      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3062065.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基于干预SARIMA模型对疫情后民航客运量的预测.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

基于干预SARIMA模型对疫情后民航客运量的预测.pdf

1、Statistics and Application 统计学与应用统计学与应用,2023,12(4),1020-1033 Published Online August 2023 in Hans.https:/www.hanspub.org/journal/sa https:/doi.org/10.12677/sa.2023.124105 文章引用文章引用:廖俊林.基于干预 SARIMA 模型对疫情后民航客运量的预测J.统计学与应用,2023,12(4):1020-1033.DOI:10.12677/sa.2023.124105 基于干预基于干预SARIMA模型对疫情后民航客运量的模型对疫情后

2、民航客运量的预测预测 廖俊林廖俊林 华南师范大学数学科学学院,广东 广州 收稿日期:2023年7月19日;录用日期:2023年8月9日;发布日期:2023年8月22日 摘摘 要要 民航客运量不仅是交通运输部门确定合理交通设施规模的基础,同时也是保障机场设施高效率利用的前民航客运量不仅是交通运输部门确定合理交通设施规模的基础,同时也是保障机场设施高效率利用的前提。因此,对疫情后民航客运量展开科学预测显得尤为重要。针对现阶段对客运量预测中未能定量考虑提。因此,对疫情后民航客运量展开科学预测显得尤为重要。针对现阶段对客运量预测中未能定量考虑到新冠疫情对客运量影响的研究缺口,本文在建立到新冠疫情对客运

3、量影响的研究缺口,本文在建立SARIMA(1,1,1)(0,1,1)12模型对未发生疫情下我国模型对未发生疫情下我国民航客运量展开预测的基础上,运用干预分析方法定量衡量新冠疫情对民航客运量的影响,进而对疫情民航客运量展开预测的基础上,运用干预分析方法定量衡量新冠疫情对民航客运量的影响,进而对疫情后民航客运量展开预测。结果表明,相比于单一后民航客运量展开预测。结果表明,相比于单一SARIMA模型,干预模型,干预SARIMA模型对疫情后民航客运量短模型对疫情后民航客运量短期预测效果表现良好期预测效果表现良好,后续可采用,后续可采用类似类似干干预分析方法将经济状况、政策变化、航空公司策略等事件考虑预

4、分析方法将经济状况、政策变化、航空公司策略等事件考虑进来,以更全面分析和预测民航客运量的变化进来,以更全面分析和预测民航客运量的变化。关键词关键词 民航客运量预测,疫情干预分析,民航客运量预测,疫情干预分析,SARIMA模型模型 Prediction of Civil Aviation Passenger Traffic after the Epidemic Based on the Intervention SARIMA Model Junlin Liao School of Mathematical Sciences,South China Normal University,Guangz

5、hou Guangdong Received:Jul.19th,2023;accepted:Aug.9th,2023;published:Aug.22nd,2023 Abstract Civil aviation passenger traffic is not only the basis for the transportation sector to determine the 廖俊林 DOI:10.12677/sa.2023.124105 1021 统计学与应用 reasonable scale of transportation facilities,but also a prere

6、quisite to ensure the efficient use of airport facilities.Therefore,it is particularly important to make scientific forecasts of civil avia-tion passenger traffic after the epidemic.Based on the SARIMA(1,1,1)(0,1,1)12 model,this paper uses intervention analysis to quantitatively measure the impact o

7、f the new epidemic on Chinas civil aviation passenger traffic,and then forecast the post-epidemic civil aviation passenger traffic,in order to address the gap that the current passenger traffic forecast does not quantitatively take into account the impact of the new epidemic.The results show that th

8、e intervention SARIMA mod-el is effective in predicting passenger traffic in China after the epidemic.The results show that compared with the single SARIMA model,the intervention SARIMA model performs well in the short-term prediction of civil aviation passenger traffic after the epidemic,and the in

9、tervention analysis method can be similarly used to take into account the economic situation,policy changes,airline strategies and other events in order to analyze and predict the changes in civil aviation passenger traffic more comprehensively.Keywords Civil Aviation Passenger Traffic Forecasting,E

10、pidemic Intervention Analysis,SARIMA Model Copyright 2023 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.引言引言 客运量是指在一定时期内,各种运输工具实际运送的旅客数量,是反映航运企业一定时期内运送旅客人数的指标。近年来,随着经济水平的不断

11、提高以及科学技术的不断发展,民航业取得长足进步,正逐步走近人们的生活中。截止到2019年底,民航业完成旅客运输量65993.42万人次,比2018年增长7.9%,继续保持近年来高速发展水平。但是,自疫情爆发以来,我国民航业受到巨大冲击,期间实施的减少民众外出等一系列政策措施在一定程度上影响民航业的发展。民航客运量作为衡量民航业发展的重要指标,不仅在一定程度上反映民航系统的运转情况,而且能够帮助民航部门合理配置资源、制定运输计划。因此,在当前这个关键时间点上,对我国民航客运量的预测与研究显得尤为重要,不仅能了解疫情对民航业的具体影响,而且可以为民航部门未来一段时间的运输计划及资源配置提供参考和建

12、议。自二十世纪以来,客运量预测问题成为诸多学者关注的热点,取得了较多的研究成果。目前,对客运量预测的研究方法主要有传统时间序列方法和机器学习方法两种方法。传统时间序列方法指通过对历史数据的分析揭示时间序列蕴含的发展规律,进而对未来短期的数据展开预测。该方法下构造出的ARIMA 等一系列模型简单高效,在客运量的预测中得到广泛地应用。陈文华(2006)1在运用一阶差分提取公路客运量年度数据所含有趋势效应的基础上运用 ARIMA 模型对未来几年浙江的公路客运量展开预测。虽然该模型在年度客运量预测表现较好,但是由于年与年之间涉及时间间隔太大,不能快速、充分地反映客运量中所蕴含的市场变化和有效信息,因此

13、需对序列时间间隔进一步缩小。由于相比于年度客运量数据,月度客运量数据还会表现出季节效应或周期效应,郝军章(2015)2在运用时序图对月度数据进行基本分析的基础上,经过对原序列逐期差分和季节差分的处理,建立 ARIMA 乘法模型对未来 3 个月的数据展开预测,虽然该模型能够充分提取月度客运量时间序列的趋势效应、季节效应以及随机效应,从而对未来客运量的数据展开科学预测,但是其残差序列可能会具有异方差性,从而导致其模型残差的Open AccessOpen Access廖俊林 DOI:10.12677/sa.2023.124105 1022 统计学与应用 方差估计不准确的现象。针对此问题,赵芳卉(20

14、21)3加入 GARCH 模型消除 ARIMA 乘法模型可能存在回归残差的异方差问题,进而使客运量的预测精度得到更进一步的提升。随着人工智能技术的日益发展,机器学习方法逐渐出现在客运量预测的研究中,如李思如4(2021)在对序列数据进行归一化处理以及对训练集和测试集进行划分的基础下,使用 LSTM 模型对未来几个月的民航客运量展开预测。相比于 ARIMA 模型,机器学习模型凭借其对已有样本特征的充分学习和训练,能够充分提取序列中 ARIMA 模型难以提取的非线性特征,进而得到更好的预测效果,但是其模型解释性较差,且容易出现过拟合的问题。针对传统时间序列模型和机器学习模型存在的优点和不足,不少学

15、者从组合预测的角度切入展开深入研究,其组合思路5主要分为两种:一种为在运用传统时间序列模型和机器学习模型得出客运量预测值的基础上,通过等权重法、简单加权、方差倒数等方法对各个预测值加权组合的并联式组合模型方法6 7,另一种为在运用 ARIMA 系列模型对客运量预测的基础上,运用机器学习方法对其残差序列展开拟合和预测,进而通过两者的线性求和得到预测精度更高的客运量预测结果的串联式组合模型方法。这两者组合方法相比于单一模型,能够充分利用传统时间序列模型和机器学习模型的优势,提高预测的准确性、鲁棒性和全面性。综合上述分析,目前学者对客运量预测的研究逐步形成一套较为完备的研究方法体系,能够很好地对未来

16、的客运量科学而精确地预测。但是,现有文献大多数都是使用疫情前的客运量数据,鲜有文献在对客运量预测中定量考虑到新冠疫情对客运量的影响。针对这一研究缺口,本文从干预分析的角度去切入,在运用 SARIMA 模型对 2020 年未发生疫情情况下民航客运量展开预测的基础上,运用干预模型对疫情发生后带来的民航客运量趋势变动进行拟合和分析,进而对疫情发生后未来的民航客运量展开预测。2.数据来源及描述性分析数据来源及描述性分析 2.1.数据来源数据来源 考虑到足够的样本数量是保证模型预测精确的基础保障,本文选取了 2007 年 1 月到 2021 年 12 月月度民航客运量时间序列数据。由于在 2020 年

17、1 月 30 日,世界卫生组织宣布新型冠状病毒肺炎疫情8被列为“国际关注的公共卫生紧急事件”,本文选取 2020 年 1 月 30 日作为干预事件的发生时间点,因此可将数据分为两个时期:第一个时期为 2007 年 1 月到 2020 年 1 月(新冠疫情发生之前),第二个时期为2020 年 2 月到 2021 年 12 月(新冠疫情发生之后)。以上数据均来自中国经济社会大数据平台的国家统计局进度数据库。2.2.描述性分析描述性分析 运用 excel 中“图表”功能绘制民航客运量的时序图,其结果如图 1 所示:通过图 1 可以看出,民航客运量在 2007 年 1 月2021 年 12 月整体上呈

18、现出先上升后下降的趋势。得益于全球经济的发展和航空业的扩张,在疫情爆发前民航客运量一直呈现稳定增长的态势,但是,自2020 年初以来,随着疫情的爆发和世界各地的旅行限制、封锁措施以及人们对旅行的担忧,航空公司遭遇了前所未有的挑战,航班的取消、航线的减少以及旅客需求的大幅下降导致了客运量的迅速萎缩。尽管疫苗的研发和推广取得了一定的进展,使得民航客运量在疫情爆发后略有了一定回调趋势,但新冠病毒的变异和全球疫苗接种进度的不均衡仍然对航空业造成了持续的影响。旅行限制、健康检疫措施和乘客需求的不确定性仍然存在,这使得恢复到疫情前的客运量水平变得困难。因此,若想对疫情后客运量的数据展开科学准确地预测,定量

19、描述疫情对客运量的影响关系是必不可少的一部分。廖俊林 DOI:10.12677/sa.2023.124105 1023 统计学与应用 Figure 1.Time series of monthly data of civil aviation passenger traffic from January 2007 to December 2021 图图 1.2007 年 1 月2021 年 12 月民航客运量月度数据时序图 3.基于基于 SARIMA 模型对民航客运量的预测模型对民航客运量的预测 3.1.模型选择模型选择 在民航客运量的预测中,常用的方法有传统时间序列分析方法和 LSTM、RF

20、 等机器学习方法,考虑到民航客运量数据集样本量较少,且相比于机器学习算法,ARIMA 系列模型简单高效,具有良好的可系列模型简单高效,具有良好的可解释性解释性,本文选择使用 ARIMA 系列模型对民航客运量序列进行拟合并对未来民航客运量进行预测。考虑到该时间序列呈现明显的线性趋势效应,对原序列展开一阶差分处理并依次绘制其时序图及原序列及一阶差分序列自相关图,具体结果分别如图 2,图 3 所示。Figure 2.Autocorrelogram of the original civil aviation passenger volume series 图图 2.原民航客运量序列的自相关图 廖俊林

21、 DOI:10.12677/sa.2023.124105 1024 统计学与应用 Figure 3.Timing diagram and autocorrelation diagram of first-order difference sequence(left is the timing diagram,right is the autocorrelation diagram)图图 3.一阶差分序列的时序图和自相关图(左为时序图,右为自相关图)通过图 13 可以看出,在疫情发生之前(2020 之前),该时间序列呈现明显的趋势效应和季节效应,具体表现出的时间序列特征如下:1)该时间序列呈现增

22、长的趋势效应。该时间序列呈现增长的趋势效应。如图 2 可知,原始序列的自相关图在 56 阶之前持续为正,56阶之后持续为负,呈现明显倒三角特征,结合时序图说明该序列具有增长的趋势效应。2)该时间序列呈现夏季偏高,冬季偏低的季节效应特征。该时间序列呈现夏季偏高,冬季偏低的季节效应特征。通过图 3 可知,在经过差分处理消除原序列趋势效应的基础上,原序列的时序图和自相关图均呈现一定的季节周期特征。通过观察对比每年各个月的数据,可以看出在 1 年中 7,8 月的数据相对是最高的,而 1,2 月的数据相对是最低的。由于 7,8月正值学生暑假时期,且夏天少雨,人们倾向于选择在夏季进行长途旅行、探亲访友或度

23、假,从而推动了客运量的增加,而 1,2 月份天气寒冷,节假日较少且春节机票价格相对较贵,因此这段时间的客运量会相对减少。3)该时间序列的趋势效应和季节效应具有一定的相关性。该时间序列的趋势效应和季节效应具有一定的相关性。通过图 1 时序图可以看出,随着趋势的递增,每个周期波动范围也逐步扩大,呈现喇叭形的形状,说明其趋势效应和季节效应具有一定相关性。基于疫情前客运量序列数据表现出的特征,本文选择运用 SARIMA 乘法模型乘法模型构建未发生疫情下客运量的预测模型。3.2.模型的建立与检验模型的建立与检验 3.2.1.差分平稳化差分平稳化 通过 python 对一阶差分序列再进行 12 步的周期差

24、分,力求提取原序列季节效应。差分后序列的时序图和自相关图如图 4 所示。通过图 4 左边时序图可以看出,经过一阶 12 步差分之后,客运量围绕在 0 值附近,在600,600的范围内波动,且没有明显的周期效应和趋势效应,结合图 4 右边自相关图显现出除 0 阶,1 阶,11 阶,12 阶之外,其他各阶自相关系数均落在两倍标准差范围内,且没有倒三角和周期现象的特征规律,可初步判断一阶 12 步差分变换充分提取原序列中蕴含的趋势效应和季节效应,从而使序列平稳化。考虑到运用时序图和自相关图检验来判断该序列的平稳性具有一定主观性。为了使检验结果更加客观准确,本文引入 ADF 单位根统计量进一步辅助判别

25、。ADF 单位根统计检验结果如表 1 所示。廖俊林 DOI:10.12677/sa.2023.124105 1025 统计学与应用 Figure 4.Timing and autocorrelation diagrams of a first-order 12-step difference sequence(left is the timing diagram,right is the autocorrelation diagram)图图 4.一阶 12 步差分序列的时序图和自相关图(左为时序图,右为自相关图)Table 1.ADF test results for the 1st orde

26、r 12-step difference series 表表 1.一阶 12 步差分序列的 ADF 检验结果 类型类型 延迟阶数延迟阶数 模型结构模型结构 统计量统计量 值值 P 值值 类型一 0 ttx=19.274 0.0001 1 11tttxx=+15.388 0.0001 2 1122ttttxxx=+10.581 0.0001 类型二 0 0ttx=+19.205 0.0001 1 011tttxx=+15.332 0.0001 2 01122ttttxxx=+10.544 0.0001 类型三 0 ttxt=+19.146 0.0001 1 11tttxtx=+15.303 0.

27、0001 2 1122ttttxtxx=+10.540 0.0001 如表 1 可知,类型一和类型二中几乎所有的统计量 P 值均小于 0.05,在显著水平为 0.05 的情况下,拒绝原假设,可以确定该序列经过一阶 12 步差分后使序列平稳化。3.2.2.纯随机性检验纯随机性检验 运用 LB 统计量对原始序列展开纯随机性检验,得出的结果如表 2 所示;Table 2.Results of the pure randomness test for the LB statistic of the first-order 12-step difference series 表表 2.一阶 12 步差分

28、序列的 LB 统计量纯随机性检验结果 延迟阶数延迟阶数 LB 统计量的值统计量的值 P 值值 2 42.351478 1.567118 107 4 88.179154 1.110630 1013 6 103.340766 5.389865 1014 廖俊林 DOI:10.12677/sa.2023.124105 1026 统计学与应用 如表 2 可知,各阶延迟下 LB 统计量的 P 值均小于 0.05,拒绝序列为纯随机序列的原假设,说明该一阶 12 步差分后的序列为非白噪声序列,具有短期相关性的特点。3.2.3.模型定阶模型定阶 绘制一阶 12 步差分序列的自相关图和偏自相关图对 SARIMA

29、 模型进行定阶,具体结果如图 5 所示。Figure 5.Autocorrelation and partial autocorrelation plots of first-order 12-step difference series(left autocorrelation plot,right partial autocorrelation plot)图图 5.一阶 12 步差分序列的自相关图和偏自相关图(左自相关图,右偏自相关图)结合图 5 的自相关图和偏自相关图,最终可使用 ARIMA(0,1,1)(0,1,1)12作为本文的预测模型,考虑到图示定阶法具有一定的主观性,本文设计 A

30、RIMA(0,1,1)(0,1,1)12,ARIMA(1,1,1)(0,1,1)12,ARIMA(1,1,1)(1,1,1)12,ARIMA(0,1,1)(1,1,1)12四个模型,通过 BIC 准则选取四个模型相对最优的模型作为最终的疫情前民航客运量的拟合和预测模型,四个模型对应的 BIC 值如表 3 所示。Table 3.BIC values of the four models 表表 3.四个模型的 BIC 值 模型形式模型形式 BIC 值值 ARIMA(0,1,1)(0,1,1)12 1654.2714 ARIMA(1,1,1)(0,1,1)12 1633.5831 ARIMA(1,1

31、,1)(1,1,1)12 1635.5814 ARIMA(0,1,1)(1,1,1)12 1656.2316 如表 3 可知,ARIMA(1,1,1)(0,1,1)12乘法模型 BIC 信息量较小,是四个模型中相对最优的模型。因此,下文将运用 ARIMA(1,1,1)(0,1,1)12模型展开参数估计、模型检验与预测。3.2.4.参数估计参数估计 在对模型进行定阶的基础上,运用最小二乘估计方法对模型进行参数估计,得出的结果如表 4。廖俊林 DOI:10.12677/sa.2023.124105 1027 统计学与应用 Table 4.Parameter estimation and signi

32、ficance test results of ARIMA(1,1,1)(0,1,1)12 model 表表 4.ARIMA(1,1,1)(0,1,1)12模型的参数估计及显著性检验结果 参数参数 参数值参数值 t 统计量的值统计量的值 P 值值 1 0.005 42.352 0.001 1 0.005 42.575 0.001 12 0.9927 4.43 0.046 通过表 4 可以看出,使用最小二乘估计得出模型的口径为:()()121210.00510.99271908.848310.005,tttBxBVarB=+(1)此外,从表 4 可以看出,各参数统计量对应的 P 值均小于 0.0

33、5,通过了参数的显著性检验。3.2.5.模型检验模型检验 为进一步保证上述构造的 ARIMA(1,1,1)(0,1,1)12模型显著有效,能充分提取民航客运量的信息,利用 LB 统计量对其残差项进行纯随机性检验。纯随机性检验结果如表 5 所示。Table 5.Significance test results of ARIMA(1,1,1)(0,1,1)12 model 表表 5.ARIMA(1,1,1)(0,1,1)12模型的显著性检验结果 延迟阶数延迟阶数 LB 统计量值统计量值 P 值值 6 4.4927 0.6103 12 12.7396 0.3883 18 17.2824 0.503

34、7 如表 5 可知,该模型各阶延迟下 LB 统计量的 P 值均显著大于 0.05,可认为该拟合模型的残差序列属于白噪声序列,即拟合模型通过模型有效性检验。3.3.模型的预测与评价模型的预测与评价 基于上文构建得出的 ARIMA(1,1,1)(0,1,1)12预测模型,对未来 24 个月(2020 年 1 月2021 年 12 月)未发生疫情情况下我国的民航客运量展开预测。2020年1月2020年5月的预测值和预测区间如表6所示:Table 6.Forecast values and forecast intervals for JanuaryMay 2020 in the absence of

35、 an outbreak 表表 6.未发生疫情情况下 2020 年 1 月5 月的预测值和预测区间 月份月份 预测值预测值 预测区间预测区间(置信水平为置信水平为 95%)2020 年 1 月 4958.21 4698.2039,5218.2170 2020 年 2 月 5033.60 4765.5411,5301.6615 2020 年 3 月 5091.24 4816.8461,5365.6454 2020 年 4 月 5047.39 4766.8406,5327.9399 2020 年 5 月 5139.11 4852.5450,5425.8775 廖俊林 DOI:10.12677/sa

36、.2023.124105 1028 统计学与应用 通过 python 中 plt 库,将 2007 年 1 月2019 年 12 月的序列实际值,序列拟合值以及 2020 年之后的序列预测值及实际值联合作图,绘制得出的图像如图 6 所示:Figure 6.Fitting and forecasting effect of the series of civil aviation passenger traffic in China 图图 6.我国民航客运量序列的拟合和预测效果图 通过图 6 可以看出:1)在拟合区域中,每个序列时间点的拟合值与真实值的差异较小,且拟合曲线均落在 95%置信区间的

37、范围之内,说明该乘法模型对未发生疫情前民航客运量序列数据的拟合效果较好。2)在预测区域中,该拟合模型对未发生疫情时期客运量的预测精度较高,但从 2020 年 2 月疫情爆发之后,预测时间点真实值远远比实际值预测值小,其实际曲线均落在 95%预测区间范围之外,间接说明新冠疫情的爆发导致民航客运量的大幅减少,使得民航业发展受到一定的困扰。4.基于干预模型衡量疫情对民航客运量的影响程度基于干预模型衡量疫情对民航客运量的影响程度 4.1.干预问题分析与有效性检验干预问题分析与有效性检验 近年来,新冠肺炎疫情事件对人们生活和社会经济造成不同程度的冲击,阶段性地影响着人们日常生活和社会发展。飞机作为我国重

38、要交通工具,其疫情后客运量变化能够较为直观地体现新冠疫情事件对人民生活的影响,研究分析疫情对客运量的冲击程度和发展趋势有利于更好预防和应对将来疫情对客运量可能造成的影响。突发事件对客运量的影响实际上是一个突发事件的干预问题9,这种干预可以运用干预分析模型10,从定量角度评估新冠疫情干预事件对民航客运量的影响。干预分析模型在客运量上的预测过程8如下:假设tY为疫情后民航客运量的某个指标值,tX表示无疫情干预影响时的民航客运量值,tZ为疫情干预影响值,则可以构造(2)式:tttYXZ=+(2)廖俊林 DOI:10.12677/sa.2023.124105 1029 统计学与应用 式中,tY为疫情前

39、后民航客运量的真实值,由于上文构建 ARIMA(1,1,1)(0,1,1)12对疫情前民航客运量数据的拟合效果和预测效果表现良好,因此将tX近似为 SARIMA 模型得出的民航客运量预测值。通过式(2),可以提取出 2020 年 2 月以后疫情干预的影响趋势,为进一步检验疫情对民航客运量的影响是确切存在的,本文首先使用 LB 统计量对干预影响趋势进行纯随机性检验。纯随机性检验的结果如表 7 所示。Table 7.Results of the pure randomness test for the LB statistic of the intervention impact series 表

40、表 7.干预影响序列的 LB 统计量纯随机性检验结果 延迟阶数延迟阶数 LB 统计量的值统计量的值 P 值值 1 4.385508 0.036246 2 5.143568 0.076399 3 5.409479 0.144154 如表 7 可知,干预影响序列在延迟阶数为 1 时其 LB 统计量的 P 值小于 0.05,拒绝序列为纯随机序列的原假设,可认为该序列为非白噪声序列,进而从统计检验的角度说明疫情对民航客运量造成的影响是真实存在的。但值得注意的是,当延迟阶数大于 2 时,其 LB 统计量的 P 值均大于 0.05,说明干预序列仅仅只有短期自相关性,因此下文在建立干预模型时延迟阶数不宜设得

41、过大。4.2.干预影响分析方程的建立与求解干预影响分析方程的建立与求解 4.2.1.基本原理基本原理 干预模型10是指在单变量序列的 ARIMA 系列模型中加进各种干预变量影响的模型。一般来说,干预变量主要分为两种:第一种为持续性的干预变量(用TS表示),一种为短暂性的干预变量(用TP表示),两种干预变量的表达形式如式(3)和式(4)所示。()()0,1,TtTStT干预变量发生之前干预变量发生之后 (3)()()0,1,TtTPtT=干预变量发生之前干预变量发生之后 (4)其中,t 是时间变量,T 表示干预变量发生年份。综合现有文献10 11 12,干预事件的影响形式虽然千资百态,但按其影响

42、的形式,可以归结为以下 4 种基本类型或其组合形式。1)干预事件的影响突然开始,且其影响是长期的。这种干预事件的影响可以表示为:tTZwS=,(5)其中,w 为干预影响的强度。2)干预事件的影响逐渐开始,且其影响是长期的。这种干预事件的影响可表示为:11btTkKwBZSBB=,(6)其中,w 为干预影响的强度,B 为后移算子,b 为延迟期数。廖俊林 DOI:10.12677/sa.2023.124105 1030 统计学与应用 3)干预事件的影响突然开始,且其影响是短期的。这种干预事件的影响可表示为:tTZwP=,(7)其中,w 为干预影响的强度。4)干预事件的影响逐渐开始,且其影响是短期的

43、。这种干预事件的影响可表示为:11btTkKwBZPBB=,(8)其中,w 为干预影响的强度,B 为后移算子,b 为延迟期数。通过 excel 软件绘制干预序列 tZ的时序图,其时序图如图 7 所示。Figure 7.Trends in the impact of new crown epidemic interventions 图图 7.新冠疫情干预的影响趋势 结合图 7 新冠疫情干预序列时序图和实际情况可得出,新冠疫情对我国民航客运量的减少造成一定的影响,具体影响可分为以下两个部分:1)新冠疫情对民航客运量造成的短期影响:新冠疫情对民航客运量造成的短期影响:在 2020 年 2 月,新冠疫

44、情对民航客运量的干预影响突然大幅度上升。一方面,随着新冠疫情在中国迅速蔓延,政府采取了严格的紧急旅行限制措施,包括封锁城市和关闭国际航班等,导致航班数量急剧减少。另一方面,由于疫情病毒的突然爆发使人们陷入了一丝恐慌,减少人们的外出风险,这均大致民航客运量出现了突然的暴减趋势。2)新冠疫情对民航客运量造成的长期影响:新冠疫情对民航客运量造成的长期影响:自 2020 年 3 月后,随着国家一系列疫情防控措施的采取以及人们的积极配合,新冠疫情对民航客运量逐渐变平缓。但值得注意的是,由于新冠疫情的复杂性、全球性和长期性挑战,抗争疫情是一个长期的过程,需要持续的努力、合作和适应,直到全球范围内实现疫情的

45、控制和结束。综合来说,新冠疫情对铁路客运量的减少既体现在紧急政策的突变短期影响,也有疫情本身的缓慢长期影响上。因此,本文建立以下(9)式干预影响过程组合模型对干预序列进行拟合与预测。212111btttTTw BZZZw PSB=+=+,(9)廖俊林 DOI:10.12677/sa.2023.124105 1031 统计学与应用 其中,()()()()2020320202,20203202020,0,1,1,TTttSPtt年 月年 月年 月年 月 4.2.2.干预方程的拟合干预方程的拟合 对于干预序列1 tZ,根据其在 2020 年 2 月序列值可计算得出 w1=4304.01。运用最小二乘

46、方法对干预序列2tZ展开参数估计与检验,其参数估计及检验结果如表 8 所示:Table 8.Parameter estimation and significance test results of the intervention model 表表 8.干预模型的参数估计及显著性检验结果 参数参数 参数值参数值 t 统计量的值统计量的值 P 值值 w2 0.9994 2.796 0.005 1 0.6040 2.328 0.02 如表 8 可以看出,干预序列2tZ各参数 T 统计量对应的 P 值均小于 0.05,通过参数的显著性检验。对拟合模型的残差进行纯随机性检验,得出显著性检验结果如表

47、9 所示:Table 9.Significance test results of the intervention model 表表 9.干预模型的显著性检验结果 延迟阶数延迟阶数 LB 统计量值统计量值 P 值值 1 0.2004 0.6544 2 0.2284 0.8920 3 0.9308 0.8179 如表 9 可知,该模型各阶延迟下 LB 统计量的 P 值均显著大于 0.05,可认为该拟合模型的残差序列属于白噪声序列,即拟合模型通过模型有效性检验。综上所述,该干预影响过程模型有效衡量新冠疫情对民航客运量的影响,其一般方程为:120.99044304.11 0.6040btttTTB

48、ZZZPSB=+=+,(10)4.2.3.干预影响趋势的预测干预影响趋势的预测 运用干预影响过程模型对 2021 年 11 月和 2021 年 12 月的数据展开预测,得出的预测结果和 95%预测区间如表 10 所示:Table 10.Predicted values and prediction intervals for the impact trend of the intervention impact process model for NovDec 2021 表表 10.干预影响过程模型对 2021 年 11 月12 月的影响趋势的预测值和预测区间 月份月份 预测趋势值预测趋势值

49、真实趋势值真实趋势值 预测区间预测区间(置信水平为置信水平为 95%)2021 年 11 月 1833.71 3247.24 108.117,3775.5485 2021 年 12 月 1807.67 2632.50 499.8271,4115.1817 廖俊林 DOI:10.12677/sa.2023.124105 1032 统计学与应用 如表 10 可以得出,2021 年 11 月与 12 月实际数据均在干预模型的预测区间之内,说明干预模型可以有效预测未来短期新冠疫情对民航客运量的影响。值得注意的是,由于 2021 年 11 月新冠病毒出现突变株,导致部分地区新冠疫情再度二次爆发,因此干预

50、模型得出我国民航客运量的预测值与真实值仍存在一定的偏差。若想进一步提高预测精度,需进一步将疫情突变株出现对民航客运量的影响考虑在内。4.2.4.干预模型的预测效果评价干预模型的预测效果评价 基于干预模型的一般方程形式:tttYXZ=+,根据上文构建的 ARIMA 乘法模型得出的 2021 年 11月和 2021 年 12 月未发生疫情情况下的预测值21,11Y,21,12Y以及干预影响过程模型得出相同时间段新冠过程影响程度预测值21,11Z,21,12Z,得出干预模型对新冠疫情情况下 2021 年 11 月和 12 月的预测值如表 11所示。为更好地对干预模型的预测效果进行比较,本文也尝试直接

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2