ImageVerifierCode 换一换
格式:PPTX , 页数:35 ,大小:665.24KB ,
资源ID:3170919      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3170919.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1_7.3 等比数列(分层集训).pptx)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

1_7.3 等比数列(分层集训).pptx

1、高考数学,专题七数列7.3等比数列,考点一等比数列及其前n项和,1.(2023届贵州遵义新高考协作体入学质量监测,4)已知正项等比数列an的前n项和为Sn,若S3=26,a3=18,则S5=()A.80B.81C.243D.242答案D,2.(2022全国乙,理8,文10,5分)已知等比数列an的前3项和为168,a2-a5=42,则a6=()A.14B.12C.6D.3答案D,3.(2022山东联考,4)在正项等比数列an中,a1=3,且3a2是a3和a4的等差中项,则a2=()A.8B.6C.3D.答案B,4.(2022辽宁渤海大学附中考试)已知递增等比数列an中,a2+a5=18,a3a

2、4=32,若an=128,则n=()A.5B.6C.7D.8答案D,5.(2020课标文,6,5分)记Sn为等比数列an的前n项和.若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1答案B,6.(2022 辽宁大连一中期中,4)等比数列an的前n项和为Sn,若Sn=t2n-1-1,则t=()A.2B.-2C.1D.-1答案A,7.(2020课标理,6,5分)数列an中,a1=2,am+n=aman.若ak+1+ak+2+ak+10=215-25,则k=()A.2B.3C.4D.5答案C,8.(2020课标文,10,5分)设an是等比数列,

3、且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32答案D,9.(2022福建龙岩一中期中,5)已知公差不为0的等差数列的第4,7,16项恰好分别是某等比数列的第4,6,8项,则该等比数列的公比是()A.B.-C.或-D.答案C,10.(多选)(2022湖北新高考联考,9)已知等比数列an的公比为q,前4项的和为a1+14,且a2,a3+1,a4成等差数列,则q的值可能为()A.B.1C.2D.3答案AC,11.(2019课标,文6,理5,5分)已知各项均为正数的等比数列an的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C

4、.4D.2答案C,12.(2022新高考,17,10分)已知an是等差数列,bn是公比为2的等比数列,且a2-b2=a3-b3=b4-a4.(1)证明:a1=b1;(2)求集合k|bk=am+a1,1m500中元素的个数.,解析(1)证明:设等差数列an的公差为d.由a2-b2=a3-b3得a1+d-2b1=a1+2d-4b1,故d=2b1,由a3-b3=b4-a4得a1+2d-4b1=8b1-a1-3d,故2a1+5d=12b1,由得2a1+10b1=12b1,即a1=b1.(2)由(1)知d=2b1=2a1,由bk=am+a1,1m500得b12k-1=2a1+(m-1)d,即a12k-1

5、=2a1+2(m-1)a1,其中a10,2k-1=2m,即2k-2=m,12k-2500,0k-28,2k10.故集合k|bk=am+a1,1m500中元素个数为9个.,13.(2020新高考,18,12分)已知公比大于1的等比数列an满足a2+a4=20,a3=8.(1)求an的通项公式;(2)(新高考)记bm为an在区间(0,m(mN*)中的项的个数,求数列bm的前100项和S100.(新高考)求a1a2-a2a3+(-1)n-1anan+1.,解析(1)设an的公比为q.由题设得a1q+a1q3=20,a1q2=8.解得q1=(舍去),q2=2.由题设得a1=2.所以an的通项公式为an

6、=2n.(2)(新高考)由题设及(1)知b1=0,且当2nm2n+1时,bm=n.所以S100=b1+(b2+b3)+(b4+b5+b6+b7)+(b32+b33+b63)+(b64+b65+b100)=0+12+222+323+424+525+6(100-63)=480.(新高考)a1a2-a2a3+(-1)n-1anan+1=23-25+27-29+(-1)n-122n+1=-(-1)n.,14.(2020课标文,17,12分)设等比数列an满足a1+a2=4,a3-a1=8.(1)求an的通项公式;(2)记Sn为数列log3an的前n项和.若Sm+Sm+1=Sm+3,求m.,解析(1)设

7、an的公比为q,则an=a1qn-1.由已知得解得a1=1,q=3.所以an的通项公式为an=3n-1.(2)由(1)知log3an=n-1.故Sn=.由Sm+Sm+1=Sm+3得m(m-1)+(m+1)m=(m+3)(m+2),即m2-5m-6=0.解得m=-1(舍去)或m=6.,考点二等比数列的性质,考向一等比数列前n项和的性质,1.(2022江苏镇江期中,5)已知等比数列an的前n项和为Sn,且S10=1,S30=13,则S40=()A.-51B.-20C.27D.40答案D,2.(2021全国甲理,7,5分)等比数列an的公比为q,前n项和为Sn.设甲:q0,乙:Sn是递增数列,则()

8、A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案B,考向二下标和性质、有关项的性质,1.(2022湖南炎德英才联考,6)在等比数列an中,a1+a2+a3+a4+a5+a6+a7+a8=,a4a5=-,则+=()A.-6B.-C.D.2答案A,2.(2022济南历城二中调研)在等比数列an中,a2=-1,a6=-4,则a3a4a5=()A.-8B.8C.8D.16答案A,3.(2022辽宁大连模拟,5)已知数列an是递增的等比数列,且a1+a4=18,a2a3=32,若an的前n项和Sn满足Sk+10-Sk=

9、216-26,则正整数k等于()A.5B.6C.7D.8答案A,4.(2023届黑龙江七台河勃利高级中学开学考,15)在等比数列an中,公比q1,+=,a3a5=18,则q2=.答案,5.(2022海南三亚华侨学校月考,16)若数列an为等比数列,且a1+a2=1,a3+a4=4,则a9+a10=.答案256,考法等比数列的判定与证明,1.(2022广州调研)已知数列an满足=anan+2(nN*),若a3=1,a7=4,则a5=()A.2B.-2C.2D.8答案C,2.(2022长沙雅礼中学月考,6)数学家也有许多美丽的错误,如法国数学家费马于1640年提出了Fn=+1(n=0,1,2,)是

10、质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F5=6416 700 417,不是质数.现设an=log4(Fn-1)(n=1,2,),Sn表示数列an的前n项和,若32Sn=63an,则n=()A.5B.6C.7D.8答案B,3.(多选)(2022重庆西南大学附中开学考,11)“内卷”是指一类文化模式达到最终的形态以后,既没有办法稳定下来,也没有办法转变为新的形态,而只能不断地在内部变得更加复杂的现象.热爱数学的小明由此想到了数学中的螺旋线.连接嵌套的各个正方形的顶点就得到了近似于螺旋线的美丽图案,具体作法是在边长为1的正方形ABCD中,作它的内接正方形EFGH,且使得BEF=15

11、;再作正方形EFGH的内接正方形MNPQ,且使得FMN=15;依此进行下去,就形成了阴影部分的图案,如图所示.设第n个正方形的边长为an(其中第1个正方形ABCD的边长为a1=AB,第2个正方形EFGH的边长为a2=EF,),第n个直角三角形(阴影部分)的面积为Sn(其中第1个直角三角形AEH的面积为S1,第2个直角三角形EQM的面积为S2,),则(),A.数列an是公比为的等比数列B.S1=,C.数列an是公比为的等比数列D.数列Sn的前n项和Tn答案BD,4.(2022湖南益阳一模,16)已知数列an中,a1=1,an+1=-,若bn=,则数列bn的前n项和Sn=.答案-,5.(2022福

12、建漳州一中段考,13)已知等比数列an的前n项和为Sn,公比q0,a1=1,a12=9a10,若数列t+Sn为等比数列,则实数t=.答案,6.(2022河北衡水中学三模,17)已知数列an满足a1=2,an+1=2an-n+1(nN*).(1)证明:数列an-n是等比数列,并求出数列an的通项公式;(2)数列bn满足:bn=(nN*),求数列bn的前n项和Sn.,解析(1)因为数列an满足a1=2,an+1=2an-n+1,所以an+1-(n+1)=2(an-n),而a1-1=1,于是数列an-n是首项为1,公比为2的等比数列,an-n=12n-1,即an=2n-1+n.(2)由(1)知bn=

13、,Sn=+,则Sn=+,于是得Sn=+-=-=1-=1-,Sn=2-,所以数列bn的前n项和Sn=2-.,7.(2019课标理,19,12分)已知数列an和bn满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.(1)证明:an+bn是等比数列,an-bn是等差数列;(2)求an和bn的通项公式.,解析(1)证明:由题设得4(an+1+bn+1)=2(an+bn),即an+1+bn+1=(an+bn).又因为a1+b1=1,所以an+bn是首项为1,公比为的等比数列.由题设得4(an+1-bn+1)=4(an-bn)+8,即an+1-bn+1=an-bn+2.又因为a1-b1=1,所以an-bn是首项为1,公差为2的等差数列.(2)由(1)知,an+bn=,an-bn=2n-1.所以an=(an+bn)+(an-bn)=+n-,bn=(an+bn)-(an-bn)=-n+.,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2