ImageVerifierCode 换一换
格式:ZIP , 页数:0 ,大小:71.07MB ,
资源ID:3171450      下载积分:6 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3171450.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(考研数学(三)真题及解析(1987-2019).zip)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

考研数学(三)真题及解析(1987-2019).zip

1、1989 年全国硕士研究生入学统一考试数学三试题1989 年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分 1515 分,每小题 3 3 分.把答案填在题中横线上.).)(1)曲线2sinyxx在点122,处的切线方程是_ _ .(2)幂级数01nnxn的收敛域是_ _ .(3)齐次线性方程组1231231230,0,0 xxxxxxxxx 只有零解,则应满足的条件是_ _ .(4)设随机变量X的分布函数为 00sin0212,x,F xAx,x,x,则A=_,6PX .(5)设随机变量X的数学期望()E X,方差2()D X,则由切比雪夫(Chebyshev)不等式,有3 P X_

2、 _ .二、选择题(本题满分 1515 分,每小题 3 3 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.).)(1)设 232xxf x,则当0 x 时 ()(A)f x与x是等价无穷小量 (B)f x与x是同阶但非等价无穷小量(C)f x是比x较高阶的无穷小量 (D)f x是比x较低阶的无穷小量(2)在下列等式中,正确的结果是 ()(A)fx dxf x (B)df xf x(C)df x dxf xdx (D)df x dxf x(3)设A为n阶方阵且0A,则 ()(A)A中必有两行(列)的元素对应成比例(B)A中任意一行(列)向量是其余各行(列)向

3、量的线性组合(C)A中必有一行(列)向量是其余各行(列)向量的线性组合(D)A中至少有一行(列)的元素全为 0(4)设A和B均为n n矩阵,则必有 ()(A)ABAB (B)ABBA(C)ABBA (D)111ABAB(5)以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为 ()(A)“甲种产品滞销,乙种产品畅销”(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”(D)“甲种产品滞销或乙种产品畅销”三、计算题(本题满分 1515 分,每小题 5 5 分)(1)求极限11lim sincosxx.xx(2)已知(,),zf u v uxy vxy且(,)f u v的二阶偏导数都连续.

4、求2zx y.(3)求微分方程562xyyye的通解.四、(本题满分 9 9 分)设某厂家打算生产一批商品投放市场.已知该商品的需求函数为2()10 xPP xe,且最大需求量为 6,其中x表示需求量,P表示价格.(1)求该商品的收益函数和边际收益函数.(2 分)(2)求使收益最大时的产量、最大收益和相应的价格.(4 分)(3)画出收益函数的图形.(3 分)五、(本题满分 9 9 分)已知函数,01,()2,12.xxf xxx试计算下列各题:(1)200();xSf x e dx(4 分)(2)412(2);xSf xe dx(2 分)(3)222(2)(2,3,);nxnnSf xn e

5、dx n(1 分)(4)0nnSS.(2 分)六、(本题满分 6 6 分)假设函数()f x在,a b上连续,在(,)a b内可导,且()0fx,记1()(),xaF xf t dtxa证明在(,)a b内,()0F x.七、(本题满分 5 5 分)已知XAXB,其中010111101A,112053B,求矩阵X.八、(本题满分 6 6 分)设123(1,1,1),(1,2,3),(1,3,)t.(1)问当t为何值时,向量组123,线性无关?(3 分)(2)问当t为何值时,向量组123,线性相关?(1 分)(3)当向量组123,线性相关时,将3表示为1和2的线性组合.(2 分)九、(本题满分

6、5 5 分)设122212221A.(1)试求矩阵A的特征值;(2 分)(2)利用(1)小题的结果,求矩阵1EA的特征值,其中E是三阶单位矩阵.(3 分)十 、(本题满分 7 7 分)已知随机变量X和Y的联合密度为(),(,)0,x yexyf x y 00其它.试求:(1)P XY;(5 分)(2)()E XY.(2 分)十一、(本题满分 8 8 分)设随机变量X在2,5上服从均匀分布,现在对X进行三次独立观测,试求至少有两次观测值大于 3 的概率.1990 年全国硕士研究生入学统一考试数学三试题1990 年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分 1515 分,每小题 3

7、3 分.把答案填在题中横线上.).)(1)极限lim(3)nnnnn_.(2)设函数()f x有连续的导函数,(0)0,(0)ffb,若函数()sin,0,(),0f xaxxF xxAx在0 x 处连续,则常数A=_.(3)曲线2yx与直线2yx所围成的平面图形的面积为_.(4)若线性方程组121232343414,xxaxxaxxaxxa 有解,则常数1234,a a a a应满足条件_.(5)一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_.二、选择题(本题满分 1515 分,每小题 3 3 分.每小题给出的四个选项中,只有一项符合题目要求,把所选

8、项前的字母填在题后的括号内.).)(1)设函数sin()tanxf xxx e,则()f x是 ()(A)偶函数 (B)无界函数 (C)周期函数 (D)单调函数(2)设函数()f x对任意x均满足等式(1)()fxaf x,且有(0),fb其中,a b为非零常数,则 ()(A)()f x在1x 处不可导 (B)()f x在1x 处可导,且(1)fa(C)()f x在1x 处可导,且(1)fb (D)()f x在1x 处可导,且(1)fab(3)向量组12,s 线性无关的充分条件是 ()(A)12,s 均不为零向量(B)12,s 中任意两个向量的分量不成比例(C)12,s 中任意一个向量均不能由

9、其余1s个向量线性表示(D)12,s 中有一部分向量线性无关(4)设,A B为两随机事件,且BA,则下列式子正确的是 ()(A)P ABP A (B)P ABP A(C)P B AP B (D)()P BAP BP A(5)设随机变量X和Y相互独立,其概率分布为m-1 1P Xm12 12则下列式子正确的是 ()(A)XY (B)0P XY (C)12P XY (D)1P XY三、计算题(本题满分 2020 分,每小题 5 5 分.).)(1)求函数2ln()21xetI xdttt在区间2,e e上的最大值.m-1 1P Ym12 12(2)计算二重积分2yDxedxdy,其中D是曲线24y

10、x和29yx在第一象限所围成的区域.(3)求级数21(3)nnxn的收敛域.(4)求微分方程sincos(ln)xyyxx e的通解.四、(本题满分 9 9 分)某公司可通过电台及报纸两种形式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用1x(万元)及报纸广告费用2x(万元)之间的关系有如下经验公式:2212121215 14328210.Rxxx xxx(1)在广告费用不限的情况下,求最优广告策略;(2)若提供的广告费用为 1.5 万元,求相应的最优广告策略.五、(本题满分 6 6 分)设()f x在闭区间0,c上连续,其导数()fx在开区间(0,)c内存在且单调减少;

11、(0)0f,试应用拉格朗日中值定理证明不等式:()()()f abf af b,其中常数ab、满足条件0ababc.六、(本题满分 8 8 分)已知线性方程组1234512345234512345,3230,226,54332,xxxxxaxxxxxxxxxbxxxxx(1)ab、为何值时,方程组有解?(2)方程组有解时,求出方程组的导出组的一个基础解系;(3)方程组有解时,求出方程组的全部解.七、(本题满分 5 5 分)已知对于n阶方阵A,存在自然数k,使得0kA,试证明矩阵EA可逆,并写出其逆矩阵的表达式(E为n阶单位阵).八、(本题满分 6 6 分)设A是n阶矩阵,1和2是A的两个不同的

12、特征值,12,XX是分别属于1和2的特征向量.试证明12XX不是A的特征向量.九、(本题满分 4 4 分)从0,1,2,9十个数字中任意选出三个不同数字,试求下列事件的概率:1A 三个数字中不含 0 和 5;2A 三个数字中不含 0 或 5.十、(本题满分 5 5 分)一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为:0.50.50.5(),0,0,(,)0,xyx yeeexyF x y1-若其他.(1)问X和Y是否独立?(2)求两个部件的寿命都超过 100 小时的概率.十一、(本题满分 7 7 分)某地抽样调查结果表明,考生的外语成绩(百

13、分制)近似服从正态分布,平均成绩为 72分,96 分以上的占考生总数的 2.3%,试求考生的外语成绩在 60 分至 84 分之间的概率.附表x0 0.5 1.0 1.5 2.0 2.5 3.0 ()x0.500 0.692 0.841 0.933 0.977 0.994 0.999 表中()x是标准正态分布函数.19911991 年全国硕士研究生入学统一考试数学三试题一、填空题(本题满分 1515 分,每小题 3 3 分.把答案填在题中横线上.).)(1)设sin,xyze则dz _.(2)设曲线 3f xxax与 2g xbxc都通过点1 0,且在点1 0,有公共切线,则a _,b _,c

14、_.(3)设 xf xxe,则 nfx在点x _处取极小值 _.(4)设A和B为可逆矩阵,00AXB为分块矩阵,则1X _.(5)设随机变量X的分布函数为0,1,0.4,11,()0.8,13,1,3.xxF xP Xxxx 则X的概率分布为 _.二、选择题(本题满分 1515 分,每小题 3 3 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.).)(1)下列各式中正确的是 ()(A)01lim 11xxx (B)01lim 1xxex(C)1lim 1xxex (D)1lim 1xxex(2)设10(1,2,)nann则下列级数中肯定收敛的是 ()(A)

15、1nna (B)1(1)nnna(C)1nna (D)21(1)nnna(3)设A为n阶可逆矩阵,是A的一个特征根,则A的伴随矩阵*A的特征根之一是()(A)1nA (B)1A (C)A (D)nA(4)设A和B是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是 ()(A)A与B不相容 (B)A与B相容(C)P ABP A P B (D)P ABP A(5)对于任意两个随机变量X和Y,若()()()E XYE XE Y,则 ()(A)()()()D XYD XD Y (B)()()()D XYD XD Y(C)X和Y独立 (D)X和Y不独立三、(本题满分 5 5 分)求极限 120li

16、mxxnxxxeeen,其中n是给定的自然数.四、(本题满分 5 5 分)计算二重积分DIydxdy,其中D是由x轴,y轴与曲线1xyab所围成的区域,0,0ab.五、(本题满分 5 5 分)求微分方程22dyxyxydx满足条件2x eye的特解.六、(本题满分 6 6 分)假设曲线1L:2101yxx、x轴和y轴所围区域被曲线2L:2yax分为面积相等的两部分,其中a是大于零的常数,试确定a的值.七、(本题满分 8 8 分)某厂家生产的一种产品同时在两个市场销售,售价分别为1p和2p;销售量分别为1q和2q;需求函数分别为11240 2q.p和22100 05q.p,总成本函数为12354

17、0Cqq.试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大利润为多少?八、(本题满分 6 6 分)试证明函数1()(1)xf xx在区间(0,)内单调增加.九、(本题满分 7 7 分)设有三维列向量12321110111111,问取何值时,(1)可由123,线性表示,且表达式唯一?(2)可由123,线性表示,且表达式不唯一?(3)不能由123,线性表示?十、(本题满分 6 6 分)考虑二次型22212312132344224fxxxx xx xx x.问取何值时,f为正定二次型.十一、(本题满分 6 6 分)试证明n维列向量组12,n 线性无关的充分必要条件是1112121222

18、120TTTnTTTnTTTnnnnD ,其中Ti表示列向量i的转置,1,2,in.十二、(本题满分 5 5 分)一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号显示的时间相等,以X表示该汽车首次遇到红灯前已通过的路口的个数.求X的概率分布.十三、(本题满分 6 6 分)假设随机变量X和Y在圆域222xyr上服从联合均匀分布.(1)求X和Y的相关系数;(2)问X和Y是否独立?十四、(本题满分 5 5 分)设总体X的概率密度为1,0,(;)0,0,aaxaxexp xx其中0是未知参数,0a 是已知常数.试根据来自总体X的简单

19、随机样本12,nXXX,求的最大似然估计量.1992 年全国硕士研究生入学统一考试数学三试题1992 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分,把答案填在题中横线上.).)(1)设商品的需求函数为1005QP,其中,Q P分别表示为需求量和价格,如果商品需求弹性的绝对值大于 1,则商品价格的取值范围是_.(2)级数21(2)4nnnxn的收敛域为_.(3)交换积分次序2120(,)yydyf x y dx_.(4)设A为m阶方阵,B为n阶方阵,且0,0AAa Bb CB,则C _.(5)将,C C E E I N S等七个字

20、母随机地排成一行,那么,恰好排成英文单词 SCIENCE的概率为_.二、选择题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.).)(1)设2()()xaxF xf t dtxa,其中()f x为连续函数,则lim()xaF x等于 ()(A)2a (B)2()a f a(C)0 (D)不存在(2)当0 x 时,下面四个无穷小量中,哪一个是比其他三个更高阶的无穷小量?()(A)2x (B)1 cosx(C)211x (D)tanxx(3)设A为m n矩阵,齐次线性方程组0Ax 仅有零解的充分条

21、件是 ()(A)A的列向量线性无关 (B)A的列向量线性相关(C)A的行向量线性无关 (D)A的行向量线性相关(4)设当事件A与B同时发生时,事件C必发生,则 ()(A)()()()1P CP AP B (B)()()()1P CP AP B(C)()()P CP AB (D)()()P CP AB(5)设n个随机变量12,nXXX独立同分布,2111(),niiD XXXn2211()1niiSXXn,则 ()(A)S是的无偏估计量 (B)S是的最大似然估计量(C)S是的相合估计量(即一致估计量)(D)S与X相互独立三、(本题满分 5 5 分)设函数lncos(1),1,1 sin()21,

22、1.xxxf xx问函数()f x在1x 处是否连续?若不连续,修改函数在1x 处的定义使之连续.四、(本题满分 5 5 分)计算arccot.xxeIdxe五、(本题满分 5 5 分)设sin()(,)xzxyxy,求2zx y,其中(,)u v有二阶偏导数.六、(本题满分 5 5 分)求连续函数()f x,使它满足20()2()xf xf t dtx.七、(本题满分 6 6 分)求证:当1x 时,212arctanarccos214xxx.八、(本题满分 9 9 分)设曲线方程(0)xyex.(1)把曲线xye,x轴,y轴和直线(0)x 所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体

23、体积()V;求满足1()lim()2V aV的a.(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.九、(本题满分 7 7 分)设矩阵A与B相似,其中20010022,02031100AxBy.(1)求x和y的值.(2)求可逆矩阵P,使得1P APB.十、(本题满分 6 6 分)已知三阶矩阵0B,且B的每一个列向量都是以下方程组的解:123123123220,20,30.xxxxxxxxx(1)求的值;(2)证明0B.十一、(本题满分 6 6 分)设AB、分别为mn、阶正定矩阵,试判定分块矩阵00ACB是否是正定矩阵.十二、(本题满分 7 7 分)假设测量

24、的随机误差2(0,10)XN:,试求 100 次独立重复测量中,至少有三次测量误差的绝对值大于 19.6 的概率,并利用泊松分布求出的近似值(要求小数点后取两位有效数字).附表1 2 3 4 5 6 7 e0.368 0.135 0.050 0.018 0.007 0.002 0.001 十三、(本题满分 5 5 分)一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为 0.10,0.20和 0.30.假设各部件的状态相互独立,以X表示同时需要调整的部件数,试求X的数学期望EX和方差DX.十四、(本题满分 4 4 分)设二维随机变量(,)X Y的概率密度为,0,(,)0,yexyf

25、x y其他,(1)求随机变量X的密度()Xfx;(2)求概率1P XY.19931993 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分,把答案填在题中横线上.).)(1)2352limsin53xxxx .(2)已知 232,arctan,32xyffxxx则0 xdydx .(3)级数0(ln3)2nnn的和为 .(4)设4阶方阵A的秩为2,则其伴随矩阵*A的秩为 .(5)设总体的方差为 1,根据来自X的容量为 100 的简单随机样本,测得样本均值为5,则X的数学期望的置信度近似等于 0.95 的置信区间为 .二、选择题(本题

26、共 5 5 小题,每小题 3 3 分,满分 1515 分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.).)(1)设 f x 21sin,0,0,0,xxxx则 f x在点0 x 处 ()(A)极限不存在 (B)极限存在但不连续 (C)连续但不可导 (D)可导(2)设 f x为连续函数,且 ln1,xxF xf t dt则 Fx等于 ()(A)2111lnfxfxxx (B)11lnfxfxx (C)2111lnfxfxxx (D)1lnfxfx(3)n阶方阵A具有n个不同的特征值是A与对角阵相似的 ()X(A)充分必要条件 (B)充分而非必要条件 (

27、C)必要而非充分条件 (D)既非充分也非必要条件(4)假设事件A和B满足()1P B A,则 ()(A)A是必然事件 (B)()0P B A.(C)AB (D)AB(5)设随机变量X的密度函数为()x,且()()xx.()F x是X的分布函数,则对任意实数a,有 ()(A)0()1()aFax dx.(B)01()()2aFax dx (C)()()FaF a (D)()2()1FaF a三、(本题满分 5 5 分)设zf x,y是由方程0z y xzyxxe 所确定的二元函数,求dz.四、(本题满分 7 7 分)已知22lim4xxaxxax edxxa,求常数a的值.五、(本题满分 9 9

28、 分)设某产品的成本函数为2,Caqbqc需求函数为1(),qdpe其中C为成本,q为需求量(即产量),p为单价,a b c d e都是正的常数,且db,求:(1)利润最大时的产量及最大利润;(2)需求对价格的弹性;(3)需求对价格弹性的绝对值为 1 时的产量.六、(本题满分 8 8 分)假设:(1)函数()(0)yf xx 满足条件(0)0f和0()1xf xe;(2)平行于y轴的动直线MN与曲线()yf x和1xye分别相交于点1P和2P;(3)曲线()yf x,直线MN与x轴所围封闭图形的面积S恒等于线段12PP的长度.求函数()yf x的表达式.七、(本题满分 6 6 分)假设函数()

29、f x在0,1上连续,在(0,1)内二阶可导,过点(0,(0)Af与(1,(1)Bf的直线与曲线()yf x相交于点(,()C c f c,其中01c.证明:在(0,1)内至少存在一点,使()0f.八、(本题满分 1010 分)k为何值时,线性方程组12321231234,24xxkxxkxxkxxx 有惟一解,无解,有无穷多组解?在有解情况下,求出其全部解.九、(本题满分 9 9 分)设二次型222123122313222fxxxx xx xx x经正交变换XPY化成22232fyy,其中123(,)TXx xx和123(,)TYy yy是三维列向量,P是 3 阶正交矩阵.试求常数,.十、(

30、本题满分 8 8 分)设随机变量X和Y同分布,X的概率密度为23,02,()80,.xxf x其他(1)已知事件AXa和BYa独立,且34P AB.求常数a.(2)求21X的数学期望.十一、(本题满分 8 8 分)假设一大型设备在任何长为t的时间内发生故障的次数 N t服从参数为t的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作 8 小时的情形下,再无故障运行 8 小时的概率Q.19941994 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.把答案填在题中横线上.).)(1)2222xxdx

31、x_.(2)已知()1fx,则000lim(2)()xxf xxf xx_.(3)设方程2cosxyeyx确定y为x的函数,则dydx_.(4)设121000000,000000nnaaAaaLLMMMMLL其中0,1,2,iainL则1A_.(5)设随机变量X的概率密度为2,01,()0,xxf x其他,以Y表示对X的三次独立重复观察中事件12X出现的次数,则2P Y _.二、选择题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.).)(1)曲线2121arctan(1)(2)xxxyexx的渐近

32、线有 ()(A)1 条 (B)2 条 (C)3 条 (D)4 条(2)设常数0,而级数21nna收敛,则级数21(1)nnnan ()(A)发散 (B)条件收敛 (C)绝对收敛 (D)收敛性与有关(3)设A是m n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵BAC的秩为1r,则()(A)1rr (B)1rr (C)1rr (D)r与1r的关系由C而定(4)设0()1,0()1,()()1P AP BP A BP A B,则 ()(A)事件A和B互不相容 (B)事件A和B相互对立(C)事件A和B互不独立 (D)事件A和B相互独立(5)设12,nXXXL是来自正态总体2(,)N 的简单随机样本,X

33、是样本均值,记222212112222341111(),(),111(),(),1nniiiinniiiiSXXSXXnnSXSXnn则服从自由度为1n的t分布的随机变量是 ()(A)11XtSn (B)21XtSn (C)3XtSn (D)4XtSn三、(本题满分 6 6 分)计算二重积分(),Dxy dxdy其中22(,)1Dx y xyxy.四、(本题满分 5 5 分)设函数()yy x满足条件440,(0)2,(0)4,yyyyy 求广义积分0()y x dx.五、(本题满分 5 5 分)已知22(,)arctanarctanyxf x yxyxy,求2fx y.六、(本题满分 5 5

34、 分)设函数()f x可导,且10(0)0,()()xnnnfF xtf xtdt,求20()limnxF xx.七、(本题满分 8 8 分)已知曲线(0)ya x a与曲线lnyx在点00(,)xy处有公共切线,求:(1)常数a及切点00(,)xy;(2)两曲线与x轴围成的平面图形绕x轴旋转所得旋转体的体积xV.八、(本题满分 6 6 分)假设()f x在,)a 上连续,()fx在,a 内存在且大于零,记()()()()f xf aF xxaxa,证明()F x在,a 内单调增加.九、(本题满分 1111 分)设线性方程组23112131231222322313233323142434,.x

35、a xa xaxa xa xaxa xa xaxa xa xa(1)证明:若1234,a a a a两两不相等,则此线性方程组无解;(2)设1324,(0)aak aak k,且已知12,是该方程组的两个解,其中12111,1,11写出此方程组的通解.十、(本题满分 8 8 分)设0011100Axy有三个线性无关的特征向量,求x和y应满足的条件.十一、(本题满分 8 8 分)假设随机变量1234,XXXX相互独立,且同分布00.6,10.4(1,2,3,4)iiP XP Xi,求行列式1234XXXXX的概率分布.十二、(本题满分 8 8 分)假设由自动线加工的某种零件的内径X(毫米)服从正

36、态分布(,1)N,内径小于10 或大于 12 的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T(单位:元)与销售零件的内径X有如下关系:1,10,20,1012,5,12.XTXX问平均内径取何值时,销售一个零件的平均利润最大?1995 年全国硕士研究生入学统一考试数学三试题1995 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.把答案填在题中横线上.).)(1)设1()1xf xx,则()()nfx .(2)设()yzxyfx,()f u可导,则xyxzyz .(3)设(ln)1fxx,则(

37、)f x .(4)设100220345A,A是A的伴随矩阵,则1()A .(5)设12,nXXX是来自正态总体2(,)N 的简单随机样本,其中参数和2未知,记22111,(),nniiiiXX QXXn则假设0:0H的t检验使用统计量t _.二、选择题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.).)(1)设()f x为可导函数,且满足条件0(1)(1)lim12xffxx,则曲线()yf x在点(1,(1)f处的切线斜率为 ()(A)2 (B)1 (C)12 (D)2(2)下列广义积分发散的是

38、 ()(A)111sindxx (B)12111dxx (C)20 xedx (D)221lndxxx(3)设矩阵m nA的秩为()r Amn,mE为m阶单位矩阵,下述结论中正确的是 ()(A)A的任意m个行向量必线性无关(B)A的任意一个m阶子式不等于零(C)若矩阵B满足0BA,则0B(D)A通过初等行变换,必可以化为(,0)mE的形式(4)设随机变量X和Y独立同分布,记,UXY VXY,则随机变量U与V必然()(A)不独立 (B)独立 (C)相关系数不为零 (D)相关系数为零(5)设随即变量X服从正态分布2(,)N,则随的增大,概率P X ()(A)单调增大 (B)单调减少 (C)保持不变

39、 (D)增减不定三、(本题满分 6 6 分)设2202(1 cos),0()1,01cos,0 xxxxf xxt dtxx,试讨论()f x在0 x 处的连续性和可导性.四、(本题满分 6 6 分)已知连续函数()f x满足条件320()3xxtf xfdte,求()f x.五、(本题满分 6 6 分)将函数2ln(12)yxx展成x的幂级数,并指出其收敛区间.六、(本题满分 5 5 分)计算22()min,xyx y edxdy.七、(本题满分 6 6 分)设某产品的需求函数为()QQ p,收益函数为RpQ,其中p为产品价格,Q为需求量(产品的产量),()Q p为单调减函数.如果当价格为0

40、p,对应产量为0Q时,边际收益00Q QdRadQ,收益对价格的边际效应00ppdRcdp,需求对价格的弹性1pEb.求0p和0Q.八、(本题满分 6 6 分)设()f x、()g x在区间,a a(0a)上连续,()g x为偶函数,且()f x满足条件()()f xfxA(A为常数).(1)证明0()()()aaaf x g x dxAg x dx;(2)利用(1)的结论计算定积分22sinarctanxxe dx.九、(本题满分 9 9 分)已知向量组()123,;()1234,;()1235,如果各向量组的秩分别为(I)(II)3rr,(III)4r.证明:向量组12354,的秩为 4.

41、十、(本题满分 1010 分)已知二次型2212323121323(,)43448f x xxxxx xx xx x.(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵.十一、(本题满分 8 8 分)假设一厂家生产的每台仪器,以概率 0.70 可以直接出厂;以概率 0.30 需进一步调试,经调试后以概率 0.80 可以出厂;以概率 0.20 定为不合格品不能出厂.现该厂新生产了(2)n n 台仪器(假设各台仪器的生产过程相互独立).求:(1)全部能出厂的概率;(2)其中恰好有两台不能出厂的概率;(3)其中至少有两台不能出厂的概率.十二、(本题满分 8 8

42、 分)已知随机变量X和Y的联合概率密度为4,01,01,(,)0,xyxyf x y其他,求X和Y联合分布函数(,)F x y.19961996 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.把答案填在题中横线上.).)(1)设方程yxy确定y是x的函数,则dy _.(2)设()arcsinxf x dxxC,则1()dxf x_.(3)设00,xy是抛物线2yaxbxc上的一点,若在该点的切线过原点,则系数应满足的关系是_.(4)设123222212311111231111nnnnnnnaaaaAaaaaaaaa,123nxx

43、Xxx,1111B ,其中(;,1,2,)ijaa ij i jn.则线性方程组TA XB的解是_.(5)设由来自正态总体2(,0.9)XN容量为 9 的简单随机样本,得样本均值5X,则未知参数的置信度为 0.95 的置信区间为_.二、选择题(本题共 5 5 小题,每小题 3 3 分,满分 1515 分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.).)(1)累次积分cos200(cos,sin)df rrrdr可以写成 ()(A)2100(,)y ydyf x y dx(B)21100(,)ydyf x y dx(C)1100(,)dxf x y dy(D

44、)2100(,)x xdxf x y dy(2)下述各选项正确的是 ()(A)若21nnu和21nnv都收敛,则21()nnnuv收敛(B)1nnnu v收敛,则21nnu与21nnv都收敛(C)若正项级数1nnu发散,则1nun(D)若级数1nnu收敛,且(1,2,)nnuv n,则级数1nnv也收敛(3)设n阶矩阵A非奇异(2n),A是矩阵A的伴随矩阵,则 ()(A)1()nAAA (B)1()nAAA(C)2()nAAA (D)2()nAAA(4)设有任意两个n维向量组1,m和1,m,若存在两组不全为零的数1,m 和1,mkk,使111111()()()()0mmmmmmkkkk,则()

45、(A)1,m和1,m都线性相关(B)1,m和1,m都线性无关(C)1111,mmmm线性无关(D)1111,mmmm线性相关(5)已知0()1P B且1212()()P AABP A BP A B,则下列选项成立的是()(A)1212()()P AABP A BP A B(B)1212()()P ABA BP ABP A B(C)1212()()P AAP A BP A B(D)1122()()()P BP A P B AP A P B A三、(本题满分 6 6 分)设(),0,()0,0,xg xexf xxx其中()g x有二阶连续导数,且(0)1,(0)1gg.(1)求()fx;(2)讨

46、论()fx在(,)上的连续性.四、(本题满分 6 6 分)设函数()zf u,方程()()xyuup t dt确定u是,x y的函数,其中(),()f uu可微;()p t,()u连续,且()1u.求()()zzp yp xxy.五、(本题满分 6 6 分)计算20(1)xxxedxe.六、(本题满分 5 5 分)设()f x在区间0,1上可微,且满足条件120(1)2()fxf x dx.试证:存在(0,1)使()()0.ff七、(本题满分 6 6 分)设某种商品的单价为p时,售出的商品数量Q可以表示成aQcpb,其中ab、c均为正数,且abc.(1)求p在何范围变化时,使相应销售额增加或减

47、少.(2)要使销售额最大,商品单价p应取何值?最大销售额是多少?八、(本题满分 6 6 分)求微分方程22yxydydxx的通解.九、(本题满分 8 8 分)设矩阵010010000010012Ay.(1)已知A的一个特征值为 3,试求y;(2)求矩阵P,使()()TAPAP为对角矩阵.十、(本题满分 8 8 分)设向量12,t 是齐次线性方程组0AX 的一个基础解系,向量不是方程组0AX 的解,即0A.试证明:向量组12,t 线性无关.十一、(本题满分 7 7 分)假设一部机器在一天内发生故障的概率为 0.2,机器发生故障时全天停止工作,若一周 5 个工作日里无故障,可获利润 10 万元;发

48、生一次故障仍可获得利润 5 万元;发生两次故障所获利润 0 元;发生三次或三次以上故障就要亏损 2 万元.求一周内期望利润是多少?十二、(本题满分 6 6 分)考虑一元二次方程20 xBxC,其中BC、分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p和有重根的概率q.十三、(本题满分 6 6 分)假设12,nXXX是来自总体 X 的简单随机样本;已知(1,2,3,4)kkEXa k.证明:当n充分大时,随机变量211nniiZXn近似服从正态分布,并指出其分布参数.19971997 年全国硕士研究生入学统一考试数学三试题一、填空题(本题共 5 5 分,每小题 3 3 分

49、,满分 1515 分.把答案在题中横线上.).)(1)设()(ln)f xyfx e,其中f可微,则dy _.(2)若12201()1()1f xxf x dxx,则10()f x dx _.(3)差分方程12tttyyt的通解为_.(4)若二次型2221231231223(,)22f x xxxxxx xtx x是正定的,则t的取值范围是_.(5)设随机变量X和Y相互独立且都服从正态分布2(0,3)N,而19,XX和19,YY分别是来自总体XY和的简单随机样本,则统计量192219XXUYY服从_分布(2 分),参数为_.二、选择题(本题共 5 5 小题,每小题 3 3 分,满分 1515

50、分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(1)设561 cos20()sin,()56xxxf xt dt g x,则当0 x 时,()f x是()g x的 ()(A)低阶无穷小 (B)高阶无穷小(C)等价无穷小 (D)同阶但不等价的无穷小(2)若()()()fxf xx ,在(,0)内()0fx,且()0fx,则在(0,)内有 ()(A)()0fx,()0fx (B)()0fx,()0fx(C)()0fx,()0fx (D)()0fx,()0fx(3)设向量组1,2,3线性无关,则下列向量组中,线性无关的是 ()(A)12,23,31(B)12,2

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2