1、2.1圆(2) 教学目标【知识与能力】通过画图,了解圆的弦、弧、优弧与劣弧、半径、直径及其有关概念.【过程与方法】了解同心圆、等圆、等弧的概念.【情感态度价值观】了解“同圆或等圆的半径相等”,并能应用它解决有关的问题.教学重难点【教学重点】圆中的基本概念的认识.【教学难点】 圆与直线形的联系与运用. 课前准备无教学过程引入问题:据统计,某个学校的同学上学方式是,有的同学步行上学,有的同学坐公共汽车上学,其他方式上学的同学有,请你用扇形统计图反映这个学校学生的上学方式,并说说你是如何做的?实践探索一1圆中的相关概念(1)弦:连接圆上任意两点的线段叫做弦线段AB、BC、AC都是圆O中的弦(2)直径
2、:经过圆心的弦叫做直径线段AB为直径(3)弧:圆上任意两点间的部分叫弧半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆优弧:大于半圆的弧叫做优弧劣弧:小于半圆的弧叫做劣弧曲线BC、BAC都是圆中的弧,分别记为BC()、BAC(),其中像弧BC()这样小于半圆周的圆弧叫做劣弧,像弧BAC()这样的大于半圆周的圆弧叫做优弧(4)圆心角:顶点在圆心的角叫做圆心角AOB、AOC、BOC就是圆心角(5)同心圆:圆心相同,半径不相等的两个圆叫做同心圆(6)等圆:能够重合的两个圆叫做等圆(圆心不同)(7)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧(在大小不等的两个圆中,不存在等弧)2同圆
3、与等圆的联系:同圆与等圆的半径相等实践探索二1如图,AB是O的直径,C是O上一点,BAC与BOC有怎样的数量关系?2拓展总结:连接圆心和半径,构造等腰三角形是常用的辅助线知识应用例1 已知:如图,点A、B和点C、D分别在同心圆上,且AOBCODC与D相等吗?为什么?例2(1)在图中,画出O的两条直径;(2)依次连接这两条直径的端点,得一个四边形判断这个四边形的形状,并说明理由O例3如图,扇形OAB的半径OA3,圆心角AOB90,点C是弧AB上异于A、B的动点,过点C作CDOA于点D,作CEOB于点E,连接DE,点G、H在线段DE上,且DGGHHE(1)求证:四边形OGCH是平行四边形;(2)当点C在弧AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度,若不存在,请说明理由总结通过今天的学习,你能谈谈你的收获和困惑,对圆有什么新的认识吗?- 3 -