1、 东城区20222023学年度第一学期期末统一检测 高 三 数 学 2023.1本试卷共5页,150分。考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。考试结束后,将本试卷和答题卡一并交回。第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。(1)已知集合,则(A) (B) (C) (D)(2)在下列函数中,为偶函数的是(A) (B) (C) (D)(3)在的展开式中,若第3项的系数为10,则(A) (B) (C) (D)(4)在等比数列中,则(A) (B) (C) (D)(5) 北京中轴线是世界城市建设历
2、史上最杰出的城市设计范例之一. 其 中钟鼓楼、万宁桥、景山、故宫、端门、天安门、外金水桥、天安门 广场及建筑群、正阳门、中轴线南段道路遗存、永定门,依次是自北 向南位列轴线中央相邻的11个重要建筑及遗存.某同学欲从这11个 重要建筑及遗存中随机选取相邻的3个游览,则选取的3个中一定有故宫的概率为(A) (B) (C) (D)(6)在平面直角坐标系中,角以为始边,终边位于第一象限,且与单位圆交于点,轴,垂足为若的面积为,则(A) (B) (C) (D)(7)已知双曲线的左、右焦点分别为,其渐近线方程为,是上一点,且.若的面积为,则的焦距为(A) (B) (C) (D)(8)在中,“对于任意,”是
3、“为直角三角形”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 (9)在平面直角坐标系中,若点在直线上,则当变化时,直线的斜率的取值范围是(A) (B) (C) (D) (10)如图,在正方体中, 是棱上的动点,下列说法中正确的是存在点,使得;存在点,使得;对于任意点,到的距离为定值;对于任意点,都不是锐角三角形.(A) (B) (C) (D) 第二部分(非选择题 共110分)二、填空题 共5小题,每小题5分,共25分 (11)若复数满足,则(12)已知函数,则 ;若将的图象向左平行移动个单位长度后得到的图象,则的一个对称中心为 .(13)经过抛
4、物线焦点的直线与抛物线交于不同的两点,经过点和抛物线顶点的直线交抛物线的准线于点,则点的纵坐标与点的纵坐标的大小关系为 .(用“”“”“”填写)(14)设函数当时,的值域为_;若的最小值为1,则的取值范围是_.(15) 对于数列,令,给出下列四个结论:若,则;若,则;存在各项均为整数的数列,使得对任意的都成立;若对任意的,都有,则有.其中所有正确结论的序号是 .三、解答题共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。(16)(本小题13分)如图,在锐角中,点在边的延长线上,且CD10.()求;()求的周长(17)(本小题15分)如图,在四棱锥 中,底面是边长为2的正方形,为的中点
5、,为上一点,平面 .(I)求证:为的中点;(II)再从条件、条件这两个条件中选择一个作为已知,求直线 与平面所成角的正弦值.条件:;条件: .注:如果选择条件和条件分别解答,按第一个解答计分(18)(本小题13分) “双减”政策执行以来,中学生有更多的时间参加志愿服务和体育锻炼等课后活动.某校为了解学生课后活动的情况,从全校学生中随机选取100人,统计了他们一周参加课后活动的时间(单位:小时),分别位于区间7, 9),9, 11),11, 13),13, 15),15, 17),17, 19,用频率分布直方图表示如下:假设用频率估计概率,且每个学生参加课后活动的时间相互独立.()估计全校学生一
6、周参加课后活动的时间位于区间13, 17)的概率; ()从全校学生中随机选取3人,记表示这3人一周参加课后活动的时间在区间15, 17)的人数,求的分布列和数学期望;()设全校学生一周参加课后活动的时间的众数,中位数,平均数的估计值分别为a,b,c,请直接写出这三个数的大小关系.(样本中同组数据用区间的中点值替代)(19)(本小题14分)已知椭圆的离心率为,长轴长与短轴长的和为,分别为椭圆的左、右焦点.() 求椭圆的方程;() 设为椭圆上一点,.若,成等差数列,求实数的取值范围.(20)(本小题15分)已知函数.()求曲线在点处的切线方程;()求的极值;()证明:当时,曲线与曲线至多存在一个交点.(21)(本小题15分)已知数列,满足:,从中选取第项、第项、第项(),称数列为的长度为m的子列记为所有子列的个数.例如,其.()设数列,写出A的长度为3的全部子列,并求;()设数列,判断的大小,并说明理由;()对于给定的正整数,若数列满足:,求的最小值.学科网(北京)股份有限公司