ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:3.69MB ,
资源ID:3225226      下载积分:5 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3225226.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017学年高中数学人教A版必修4示范教案:第二章第二节平面向量的线性运算(第二课时) Word版含解析.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2017学年高中数学人教A版必修4示范教案:第二章第二节平面向量的线性运算(第二课时) Word版含解析.doc

1、第二章第二节 平面向量的线性运算第二课时教学分析向量减法运算是加法的逆运算学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算通过阐述向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识三维目标1通过探究活

2、动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量2启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量重点难点教学重点:向量的减法运算及其几何意义教学难点:对向量减法定义的理解课时安排1课时导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课思路2.(直接导入)数的减法运算是加法运算的逆运算本节课,我们继续学

3、习向量加法的逆运算减法引导学生去探究、发现推进新课向量是否有减法?向量进行减法运算,必须先引进一个什么样的新概念?如何理解向量的减法?向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念类似地,向量的减法运算也可定义为向量加法运算的逆运算可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和a互为相反向量于是(a)a.我们

4、规定,零向量的相反向量仍是零向量任一向量与其相反向量的和是零向量,即a(a)(a)a0.所以,如果a、b是互为相反的向量,那么ab,ba,ab0.(1)平行四边形法则如图1,设向量b,a,则b,由向量减法的定义,知a(b)ab.图1又ba,所以ab.由此,我们得到ab的作图方法(2)三角形法则如图2,已知a、b,在平面内任取一点O,作a,b,则ab,即ab可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义图2讨论结果:向量也有减法运算定义向量减法运算之前,应先引进相反向量与数x的相反数是x类似,我们规定,与a长度相等,方向相反的量,叫做a的相反向量,记作a.向量减法的定义我们定义a

5、ba(b),即减去一个向量相当于加上这个向量的相反向量规定:零向量的相反向量是零向量向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现上图中,如果从a的终点到b的终点作向量,那么所得向量是什么?改变上图中向量a、b的方向使ab,怎样作出ab呢?讨论结果:ba.略例1如图3(1),已知向量a、b、c、d,求作向量ab,cd.图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量作法:如图3(2),在平面内任取一点O,作a,b,c,d.则ab,cd.变式

6、训练在ABCD中,下列结论错误的是( )A.B.C.D.0分析:A显然正确,由平行四边形法则可知B正确,C中,错误,D中,0正确答案:C例2如图4,在ABCD中,a,b,你能用a、b表示向量、吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系解:由向量加法的平行四边形法则,我们知道ab,同样,由向量的减法,知ab.变式训练1已知一点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量等于( )Aabc BabcC.abc Dabc解析:如图5,点O到平行四边形的三个顶点A、

7、B、C的向量分别是a、b、c,结合图形有abc.图5答案:B2若ab,ab.当a、b满足什么条件时,ab与ab垂直?当a、b满足什么条件时,|ab|ab|?当a、b满足什么条件时,ab平分a与b所夹的角?ab与ab可能是相等向量吗?解:如图6,用向量构建平行四边形,其中向量、恰为平行四边形的对角线且ABa,ADb.图6由平行四边形法则,得ab,ab.由此问题就可转换为:当边AB、AD满足什么条件时,对角线互相垂直?(|a|b|)当边AB、AD满足什么条件时,对角线相等?(a、b互相垂直)当边AB、AD满足什么条件时,对角线平分内角?(|a|、|b|相等)ab与ab可能是相等向量吗?(不可能,因

8、为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟.例3判断题:(1)若非零向量a与b的方向相同或相反,则ab的方向必与a、b之一的方向相同(2)ABC中,必有0.(3)若0,则A、B、C三点是一个三角形的三顶点(4)|ab|ab|.活动:根据向量的加、减法及其几何意义解:(1)a与b方向相同,则ab的方向与a和b方向都相同;若a与b方向相反,则有可能a与b互为相反向量,此时ab0的方向不确定,说与a、b之一方向相同不妥(2)由向量加

9、法法则,与是互为相反向量,所以有上述结论(3)因为当A、B、C三点共线时也有0,而此时构不成三角形(4)当a与b不共线时,|ab|与|ab|分别表示以a和b为邻边的平行四边形的两条对角线的长,其大小不定当a、b为非零向量共线时,同向则有|ab|ab|,异向则有|ab|ab|;当a、b中有零向量时,|ab|ab|.综上所述,只有(2)正确例4若|8,|5,则|的取值范围是( )A3,8 B(3,8)C3,13 D(3,13)解析:.(1)当、同向时,|853;(2)当、反向时,|8513;(3)当、不共线时,3|13.综上,可知3|13.答案:C点评:此题可直接应用重要性质|a|b|ab|a|b

10、|求解.变式训练已知a、b、c是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为abc0.证明:已知a0,b0,c0,且两两不共线,(1)必要性:作a,b,则由假设c,另一方面ab.由于与是一对相反向量,有0,故有abc0.(2)充分性:作a,b,则ab,又由条件abc0,c0.等式两边同加,得c0.c,故顺次将向量a、b、c的终点和始点相连接成一三角形.课本本节练习解答:1直接在课本上据原图作(这里从略)2.,.点评:解题中可以将减法变成加法运算,如,这样计算比较简便3图略1先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的

11、作图2教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论课本习题2.2 A组6、7、8.1向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a、b的差,即ab可以表示为从向量b的终点指向向量a的终点的向量,第二种作图方法比较简捷2鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,ab的箭头方向要指向a,如果指向b则表示ba,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关

12、系一、向量减法法则的理解向量减法的三角形法则的式子内容是:两个向量相减,则表示两个向量起点的字母必须相同(否则无法相减),这样两个向量的差向量是以减向量的终点的字母为起点,以被减向量的终点的字母为终点的向量只要学生理解法则内容,那么解决起向量加减法的题来就会更加得心应手,尤其遇到向量的式子运算题时,一般不用画图就可迅速求解,如下面例题:例1化简:.解:原式0.例2化简.解:原式()()()0.二、备用习题1下列等式中,正确的个数是( )abba abba 0aa (a)a a(a)0A5 B4 C3 D2答案:B2如图7,D、E、F分别是ABC的边AB、BC、CA的中点,则等于( )图7A. B. C. D.答案:D3下列式子中不能化简为的是( )A()B()()C.D.答案:C4已知A、B、C三点不共线,O是ABC内一点,若0,则O是ABC的( )A重心 B垂心 C内心 D外心答案:A

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2