ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:211.50KB ,
资源ID:3226853      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3226853.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(【新导学案】高中数学人教版必修四:2.5《平面向量应用举例》.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

【新导学案】高中数学人教版必修四:2.5《平面向量应用举例》.doc

1、2.5平面向量应用举例导学案【学习目标】1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题.2.运用向量的有关知识解决简单的物理问题.【学法指导】预习平面向量应用举例,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。 来源:Zxxk.Com【知识链接】阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:例1如果不用向量的方法,还有其他证明方法吗?利用向量方法解决平面几何问题的“三步曲”是什么? 例3中,为何值时,|F1|最小,最小值是多少?|F1|

2、能等于|G|吗?为什么?提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容【学习过程】探究一:()向量运算与几何中的结论若,则,且所在直线平行或重合相类比,你有什么体会?()举出几个具有线性运算的几何实例例1证明:平行四边形两条对角线的平方和等于四条边的平方和已知:平行四边形ABCD求证:试用几何方法解决这个问题利用向量的方法解决平面几何问题的“三步曲”?(1) 建立平面几何与向量的联系,(2) 通过向量运算,研究几何元素之间的关系,(3) 把运算结果“翻译”成几何关系。变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设(1)证明A

3、、O、E三点共线;(2)用表示向量。例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的 中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?探究二:两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力. 这些力的问题是怎么回事?例3在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力你能从数学的角度解释这种现象吗? 请同学们结合刚才这个问题,思考下面的问题:为何值时,|F1|最小,最小值是多少?来源:学科网|F1|能等于|G|吗?为什么?例4如图,一条河的两岸平行,

4、河的宽度m,一艘船从A处出发到河对岸已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?来源:学。科。网变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s; (2)计算s在方向上的投影。【学习反思】结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。本节主要研究了用向量知识解决平面几

5、何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。【基础达标】1.已知,求边长c。2.在平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长。3.在平面上的三个力作用于一点且处于平衡状态,的夹角为,求:(1)的大小;(2)与夹角的大小。【拓展提升】一、选择题1.给出下面四个结论: 若线段AC=AB+BC,则向量; 若向量,则线段AC=AB+BC; 若向量与共线,则线段AC=AB+BC; 若向量与反向共线,则.其中正确的结论有 ( )A. 0个 B.1个 C.2个 D.3个2.河水的流速为2,一艘小船想以垂直于河岸方向10的速度驶向对岸,则小船的静止速度大小为 ( )A.10 B. C. D.123.在中,若=0,则为 ( )A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定二、填空题4.已知两边的向量,则BC边上的中线向量用、表示为 5.已知,则、两两夹角是

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2