ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:643.50KB ,
资源ID:3227697      下载积分:3 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3227697.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学 1.2.2组合教案 新人教版选修2-3.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

高中数学 1.2.2组合教案 新人教版选修2-3.doc

1、122组合教学目标:知识与技能:理解组合的意义,能写出一些简单问题的所有组合。明确组合与排列的联系与区别,能判断一个问题是排列问题还是组合问题。过程与方法:了解组合数的意义,理解排列数与组合数 之间的联系,掌握组合数公式,能运用组合数公式进行计算。情感、态度与价值观:能运用组合要领分析简单的实际问题,提高分析问题的能力。教学重点:组合的概念和组合数公式教学难点:组合的概念和组合数公式授课类型:新授课 课时安排:2课时 内容分析:排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关

2、是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系. 指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通. 能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别. 学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素

3、是否需全排列,如果不需要,是组合问题;否则是排列问题. 排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据笔者观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能

4、说明问题.久而久之,学生的逻辑思维能力将会大大提高.教学过程:一、复习引入:1、分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法 3排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列4排列数的定义:从个不同元素中,任取()个元素的所有排

5、列的个数叫做从个元素中取出元素的排列数,用符号表示5排列数公式:()6阶乘:表示正整数1到的连乘积,叫做的阶乘规定7排列数的另一个计算公式:= 8.提出问题: 示例1:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?示例2:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?引导观察:示例1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而示例2只要求选出2名同学,是与顺序无关的引出课题:组合二、讲解新课:1组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组

6、合说明:不同元素;“只取不排”无序性;相同组合:元素相同例1判断下列问题是组合还是排列(1)在北京、上海、广州三个民航站之间的直达航线上,有多少种不同的飞机票?有多少种不同的飞机票价?(2)高中部11个班进行篮球单循环比赛,需要进行多少场比赛?(3)从全班23人中选出3人分别担任班长、副班长、学习委员三个职务,有多少种不同的选法?选出三人参加某项劳动,有多少种不同的选法?(4)10个人互相通信一次,共写了多少封信?(5)10个人互通电话一次,共多少个电话?问题:(1)1、2、3和3、1、2是相同的组合吗?(2)什么样的两个组合就叫相同的组合2组合数的概念:从个不同元素中取出个元素的所有组合的个

7、数,叫做从 个不同元素中取出个元素的组合数用符号表示3组合数公式的推导:(1)从4个不同元素中取出3个元素的组合数是多少呢?启发:由于排列是先组合再排列,而从4个不同元素中取出3个元素的排列数可以求得,故我们可以考察一下和的关系,如下: 组 合 排列 由此可知,每一个组合都对应着6个不同的排列,因此,求从4个不同元素中取出3个元素的排列数,可以分如下两步: 考虑从4个不同元素中取出3个元素的组合,共有个; 对每一个组合的3个不同元素进行全排列,各有种方法由分步计数原理得:,所以,(2)推广:一般地,求从n个不同元素中取出m个元素的排列数,可以分如下两步: 先求从n个不同元素中取出m个元素的组合

8、数; 求每一个组合中m个元素全排列数,根据分步计数原理得:(3)组合数的公式:或 规定: .三、讲解范例:例2用计算器计算解:由计算器可得 例3计算:(1); (2); (1)解: 35;(2)解法1:120 解法2:120例4求证:证明:例5设 求的值 解:由题意可得: ,解得, 或或,当时原式值为7;当时原式值为7;当时原式值为11所求值为4或7或11例6 一位教练的足球队共有 17 名初级学员,他们中以前没有一人参加过比赛按照足球比赛规则,比赛时一个足球队的上场队员是11人问: (l)这位教练从这 17 名学员中可以形成多少种学员上场方案? (2)如果在选出11名上场队员时,还要确定其中

9、的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从 17 个不同元素中选出11个元素的组合问题;对于( 2 ) ,守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题解: (1)由于上场学员没有角色差异,所以可以形成的学员上场方案有 C 手 12 376 (种) . (2)教练员可以分两步完成这件事情:第1步,从17名学员中选出 n 人组成上场小组,共有种选法;第2步,从选出的 n 人中选出 1 名守门员,共有种选法所以教练员做这件事情的方法数有=136136(种).例7(1)平面内有10 个

10、点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?解:(1)以平面内 10 个点中每 2 个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有 (条).(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每 2 个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有(条).例8在 100 件产品中,有 98 件合格品,2 件次品从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多

11、少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有= 161700 (种). (2)从2 件次品中抽出 1 件次品的抽法有种,从 98 件合格品中抽出 2 件合格品的抽法有种,因此抽出的 3 件中恰好有 1 件次品的抽法有=9506(种). (3)解法 1 从 100 件产品抽出的 3 件中至少有 1 件是次品,包括有1件次品和有 2 件次品两种情况在第(2)小题中已求得其中1件是次品的抽法有种,因此根据分类加法计数原理,抽出的3 件中至少有一件是次品的抽法有+=9 604 (种) . 解法2 抽出的

12、3 件产品中至少有 1 件是次品的抽法的种数,也就是从100件中抽出3 件的抽法种数减去3 件中都是合格品的抽法的种数,即=161 700-152 096 = 9 604 (种). 说明:“至少”“至多”的问题,通常用分类法或间接法求解。变式:按下列条件,从12人中选出5人,有多少种不同选法?(1)甲、乙、丙三人必须当选; (2)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;例9(1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?解:(2)从5个男生和4个

13、女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?解:问题可以分成2类:第一类 2名男生和2名女生参加,有中选法;第二类 3名男生和1名女生参加,有中选法依据分类计数原理,共有100种选法错解:种选法引导学生用直接法检验,可知重复的很多例104名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,分别有,所以,一共有+100种方法解法二:(间接法)四、组合数的两个性质组合数的性质1:一般地,从n个不同元素中取出个元素后,剩下个元素因为从n个不同元素中取出m个元素的每一个组

14、合,与剩下的n - m个元素的每一个组合一一对应,所以从n个不同元素中取出m个元素的组合数,等于从这n个元素中取出n - m个元素的组合数,即:在这里,主要体现:“取法”与“剩法”是“一一对应”的思想证明:又 ,说明:规定:;等式特点:等式两边下标同,上标之和等于下标;此性质作用:当时,计算可变为计算,能够使运算简化.例如=2002; 或2组合数的性质2:+一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有含有的组合是从这n个元素中取出m -1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个根据分类计数原理,可以得

15、到组合数的另一个性质在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想证明: + 说明:公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数; 此性质的作用:恒等变形,简化运算 例11一个口袋内装有大小不同的7个白球和1个黑球,(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?解:(1),或,;(2);(3)例12(1)计算:;(2)求证:+解:(1)原式;证明:(2)右边左边例13解方程:(1);(2)解方程:解:(1)由原方

16、程得或,或, 又由得且,原方程的解为或上述求解过程中的不等式组可以不解,直接把和代入检验,这样运算量小得多.(2)原方程可化为,即,解得或, 经检验:是原方程的解 例14证明:。证明:原式左端可看成一个班有个同学,从中选出个同学组成兴趣小组,在选出的个同学中,个同学参加数学兴趣小组,余下的个同学参加物理兴趣小组的选法数。原式右端可看成直接在个同学中选出个同学参加数学兴趣小组,在余下的个同学中选出个同学参加物理兴趣小组的选法数。显然,两种选法是一致的,故左边=右边,等式成立。例15证明:(其中)。证明:设某班有个男同学、个女同学,从中选出个同学组成兴趣小组,可分为类:男同学0个,1个,个,则女同

17、学分别为个,个,0个,共有选法数为。又由组合定义知选法数为,故等式成立。例16证明:。证明:左边=,其中可表示先在个元素里选个,再从个元素里选一个的组合数。设某班有个同学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长。把这种选法按取到的人数分类(),则选法总数即为原式左边。现换一种选法,先选组长,有种选法,再决定剩下的人是否参加,每人都有两种可能,所以组员的选法有种,所以选法总数为种。显然,两种选法是一致的,故左边=右边,等式成立。例17证明:。证明:由于可表示先在个元素里选个,再从个元素里选两个(可重复)的组合数,所以原式左端可看成在例3指定一人为组长基础上,再指定一人为副组长(可兼

18、职)的组合数。对原式右端我们可分为组长和副组长是否是同一个人两种情况。若组长和副组长是同一个人,则有种选法;若组长和副组长不是同一个人,则有种选法。共有+种选法。显然,两种选法是一致的,故左边=右边,等式成立。例18第17届世界杯足球赛于2002年夏季在韩国、日本举办、五大洲共有32支球队有幸参加,他们先分成8个小组循环赛,决出16强(每队均与本组其他队赛一场,各组一、二名晋级16强),这支球队按确定的程序进行淘汰赛,最后决出冠亚军,此外还要决出第三、四名,问这次世界杯总共将进行多少场比赛?答案是:,这题如果作为习题课应如何分析解:可分为如下几类比赛:小组循环赛:每组有6场,8个小组共有48场

19、;八分之一淘汰赛:8个小组的第一、二名组成16强,根据抽签规则,每两个队比赛一场,可以决出8强,共有8场;四分之一淘汰赛:根据抽签规则,8强中每两个队比赛一场,可以决出4强,共有4场;半决赛:根据抽签规则,4强中每两个队比赛一场,可以决出2强,共有2场;决赛:2强比赛1场确定冠亚军,4强中的另两队比赛1场决出第三、四名 共有2场.综上,共有场五、课堂练习: 1判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法? (2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?2名同学进行乒乓球擂台赛,决出新的擂主,则共需进行的比

20、赛场数为( ) 3如果把两条异面直线看作“一对”,则在五棱锥的棱所在的直线中,异面直线有( ) 对 对 对 对4设全集,集合、是的子集,若有个元素,有个元素,且,求集合、,则本题的解的个数为 ( ) 5从位候选人中选出人分别担任班长和团支部书记,有 种不同的选法6从位同学中选出人去参加座谈会,有 种不同的选法7圆上有10个点:(1)过每2个点画一条弦,一共可画 条弦;(2)过每3个点画一个圆内接三角形,一共可画 个圆内接三角形8(1)凸五边形有 条对角线;(2)凸五边形有 条对角线9计算:(1);(2)10个足球队进行单循环比赛,(1)共需比赛多少场?(2)若各队的得分互不相同,则冠、亚军的可

21、能情况共有多少种? 11空间有10个点,其中任何4点不共面,(1)过每3个点作一个平面,一共可作多少个平面?(2)以每4个点为顶点作一个四面体,一共可作多少个四面体?12壹圆、贰圆、伍圆、拾圆的人民币各一张,一共可以组成多少种币值?13写出从这个元素中每次取出个的所有不同的组合答案:1. (1)组合, (2)排列 2. B 3. A 4. D 5. 30 6. 15 7. (1)45 (2) 120 8. (1)5(2) 9. 455; 10. 10; 2011. ; 12. 13. ; ; ; ; 六、小结 :组合的意义与组合数公式;解决实际问题时首先要看是否与顺序有关,从而确定是排列问题还

22、是组合问题,必要时要利用分类和分步计数原理 学生探究过程:(完成如下表格) 名称内容分类原理分步原理定 义相同点不同点名 称排 列组 合定义种数符号计算公式关系性质 ,七、课后作业: 八、板书设计(略) 九、教学反思:排列组合问题联系实际生动有趣,题型多样新颖且贴近生活,解法灵活独到但不易掌握,许多学生面对较难问题时一筹莫展、无计可施,尤其当从正面入手情况复杂、不易解决时,可考虑换位思考将其等价转化,使问题变得简单、明朗。教科书在研究组合数的两个性质,时,给出了组合数定义的解释证明,即构造一个组合问题的模型,把等式两边看成同一个组合问题的两种计算方法,由组合个数相等证出要证明的组合等式。这种构

23、造法证明构思精巧,把枯燥的公式还原为有趣的实例,能极大地激发学习兴趣。本文试给几例以说明。教学反思:1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种2特殊元素(或位置)优先安排将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有种3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法? (2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 6、分类组合,隔板处理从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2