ImageVerifierCode 换一换
格式:DOCX , 页数:10 ,大小:174.37KB ,
资源ID:3228312      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3228312.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学人教A版选修2-2(课时训练):2.1 合情推理与演绎推理2.1.2 Word版含答案.docx)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

高中数学人教A版选修2-2(课时训练):2.1 合情推理与演绎推理2.1.2 Word版含答案.docx

1、2.1.2演绎推理学习目标1理解演绎推理的意义2掌握演绎推理的基本模式,并能运用它们进行一些简单推理3了解合情推理和演绎推理之间的区别和联系知识链接1演绎推理的结论一定正确吗?答演绎推理的结论不会超出前提所界定的范围,所以在演绎推理中,只要前提和推理形式正确,其结论就一定正确2如何分清大前提、小前提和结论?答在演绎推理中,大前提描述的是一般原理,小前提描述的是大前提里的特殊情况,结论是根据一般原理对特殊情况作出的判断,这与平时我们解答问题中的思考是一样的,即先指出一般情况,从中取出一个特例,特例也具有一般意义例如,平行四边形对角线互相平分,这是一般情况;矩形是平行四边形,这是特例;矩形对角线互

2、相平分,这是特例具有一般意义3演绎推理一般是怎样的模式?答“三段论”是演绎推理的一般模式,它包括:(1)大前提已知的一般原理;(2)小前提所研究的特殊情况;(3)结论根据一般原理,对特殊情况做出的判断预习导引1演绎推理含义从一般性的原理出发,推出某个特殊情况下的结论的推理特点由一般到特殊的推理2.三段论一般模式常用格式大前提已知的一般原理M是P小前提所研究的特殊情况S是M结论根据一般原理,对特殊情况做出的判断S是P要点一用三段论的形式表示演绎推理例1把下列演绎推理写成三段论的形式(1)在一个标准大气压下,水的沸点是100 ,所以在一个标准大气压下把水加热到100 时,水会沸腾;(2)一切奇数都

3、不能被2整除,21001是奇数,所以21001不能被2整除;(3)三角函数都是周期函数,ytan 是三角函数,因此ytan 是周期函数解(1)在一个标准大气压下,水的沸点是100 ,大前提在一个标准大气压下把水加热到100 ,小前提水会沸腾结论(2)一切奇数都不能被2整除,大前提21001是奇数,小前提21001不能被2整除结论(3)三角函数都是周期函数,大前提ytan 是三角函数,小前提ytan 是周期函数结论规律方法用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系有时可省略小前

4、提,有时甚至也可大前提与小前提都省略在寻找大前提时,可找一个使结论成立的充分条件作为大前提跟踪演练1试将下列演绎推理写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行,海王星是太阳系中的大行星,所以海王星以椭圆轨道绕太阳运行;(2)所有导体通电时发热,铁是导体,所以铁通电时发热;(3)一次函数是单调函数,函数y2x1是一次函数,所以y2x1是单调函数;(4)等差数列的通项公式具有形式anpnq(p,q是常数),数列1,2,3,n是等差数列,所以数列1,2,3,n的通项具有anpnq的形式解(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行;小前提:海王星是太阳系里的大行星;结论:

5、海王星以椭圆形轨道绕太阳运行(2)大前提:所有导体通电时发热;小前提:铁是导体;结论:铁通电时发热(3)大前提:一次函数都是单调函数;小前提:函数y2x1是一次函数;结论:y2x1是单调函数(4)大前提:等差数列的通项公式具有形式anpnq;小前提:数列1,2,3,n是等差数列;结论:数列1,2,3,n的通项具有anpnq的形式要点二演绎推理的应用例2正三棱柱ABCA1B1C1的棱长均为a,D、E分别为C1C与AB的中点,A1B交AB1于点G.(1)求证:A1BAD;(2)求证:CE平面AB1D.证明(1)连接BD.三棱柱ABCA1B1C1是棱长均为a的正三棱柱,A1ABB1为正方形,A1BA

6、B1.D是C1C的中点,A1C1DBCD,A1DBD,G为A1B的中点,A1BDG,又DGAB1G,A1B平面AB1D.又AD平面AB1D,A1BAD.(2)连接GE,EGA1A,GE平面ABC.DC平面ABC,GEDC,GEDCa,四边形GECD为平行四边形,CEGD.又CE平面AB1D,DG平面AB1D,CE平面AB1D.规律方法(1)应用三段论解决问题时,应当首先明确什么是大前提和小前提,但为了叙述的简洁,如果前提是显然的,则可以省略(2)数学问题的解决与证明都蕴含着演绎推理,即一连串的三段论,关键是找到每一步推理的依据大前提、小前提,注意前一个推理的结论会作为下一个三段论的前提跟踪演练

7、2求证:函数y是奇函数,且在定义域上是增函数证明y1,所以f(x)的定义域为R.f(x)f(x)222220.即f(x)f(x),所以f(x)是奇函数任取x1,x2R,且x1x2.则f(x1)f(x2)22.由于x1x2,从而2x12x2,2x12x20,所以f(x1)0,则数列bn(nN*)也是等比数列”类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论解类比等比数列的性质,可以得到等差数列的一个性质是:若数列an是等差数列,则数列bn也是等差数列证明如下:设等差数列an的公差为d,则bna1(n1),所以数列bn是以a1为首项,为公差的等差数列1下面几种推理过程是演绎推理的是

8、()A两条直线平行,同旁内角互补,如果A与B是两条平行直线的同旁内角,则AB180B某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C由平面三角形的性质,推测空间四面体的性质D在数列an中,a11,an(n2),由此归纳出an的通项公式答案A解析A是演绎推理,B、D是归纳推理,C是类比推理2“因为对数函数ylogax是增函数(大前提),又ylog x是对数函数(小前提),所以ylog x是增函数(结论)”下列说法正确的是()A大前提错误导致结论错误B小前提错误导致结论错误C推理形式错误导致结论错误D大前提和小前提都错误导致结论错误答案A解析ylogax是增函数错

9、误故大前提错3把“函数yx2x1的图象是一条抛物线”恢复成三段论,则大前提:_;小前提:_;结论:_.答案二次函数的图象是一条抛物线函数yx2x1是二次函数函数yx2x1的图象是一条抛物线4 “如图,在ABC中,ACBC,CD是AB边上的高,求证:ACDBCD”证明:在ABC中 ,因为CDAB,ACBC,所以ADBD,于是ACDBCD.则在上面证明的过程中错误的是_(只填序号)答案解析由ADBD,得到ACDBCD的推理的大前提应是“在同一三角形中,大边对大角”,小前提是“ADBD”,而AD与BD不在同一三角形中,故错误1演绎推理是从一般性原理出发,推出某个特殊情况的推理方法;只要前提和推理形式

10、正确,通过演绎推理得到的结论一定正确2在数学中,证明命题的正确性都要使用演绎推理,推理的一般模式是三段论,证题过程中常省略三段论的大前提.一、基础达标1下列表述正确的是()归纳推理是由部分到整体的推理;归纳推理是由一般到一般的推理;演绎推理是由一般到特殊的推理;类比推理是由特殊到一般的推理;类比推理是由特殊到特殊的推理A B C D答案D解析根据归纳推理,演绎推理,类比推理的概念特征可以知道正确2论语学路篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足;所以,名不正,则民无所措手足”上述推理用的是()A类比推理 B归纳推理C演绎推

11、理 D一次三段论答案C解析这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次三段论,属演绎推理形式3正弦函数是奇函数,f(x)sin(x21)是正弦函数,因此f(x)sin (x21)是奇函数以上推理()A结论正确 B大前提不正确C小前提不正确 D全不正确答案C解析由于函数f(x)sin (x21)不是正弦函数故小前提不正确4“四边形ABCD是矩形,四边形ABCD的对角线相等”以上推理的大前提是()A正方形都是对角线相等的四边形B矩形都是对角线相等的四边形C等腰梯形都是对角线相等的四边形D矩形都是对边平行且相等的四边形答案B解析利用三段论分析:大前提:矩形都是对角线相等的四边形

12、;小前提:四边形ABCD是矩形;结论:四边形ABCD的对角线相等5三段论:“小宏在2013年的高考中考入了重点本科院校;小宏在2013年的高考中只要正常发挥就能考入重点本科院校;小宏在2013年的高考中正常发挥”中,“小前提”是_(填序号)答案解析在这个推理中,是大前提,是小前提,是结论6在求函数y的定义域时,第一步推理中大前提是当有意义时,a0;小前提是有意义;结论是_答案y的定义域是4,)解析由大前提知log2x20,解得x4.7用三段论证明:直角三角形两锐角之和为90.证明因为任意三角形内角之和为180(大前提),而直角三角形是三角形(小前提),所以直角三角形内角之和为180(结论)设直

13、角三角形两个锐角分别为A、B,则有AB90180,因为等量减等量差相等(大前提),(AB90)9018090(小前提),所以AB90(结论)二、能力提升8“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故某奇数(S)是3的倍数(P)”上述推理是()A小前提错 B结论错C正确的 D大前提错答案C解析由三段论推理概念知推理正确9已知三条不重合的直线m、n、l,两个不重合的平面、,有下列命题:若mn,n,则m;若l,m且lm,则;若m,n,m,n,则;若,m,n,nm,则n.其中正确的命题个数是()A1 B2 C3 D4答案B解析中,m还可能在平面内,错误;正确;中,m与n相交

14、时才成立,错误;正确故选B.10已知函数f(x)满足:f(1),4f(x)f(y)f(xy)f(xy)(x,yR),则f(2 010)_.答案解析令y1得4f(x)f(1)f(x1)f(x1)即f(x)f(x1)f(x1)令x取x1则f(x1)f(x2)f(x)由得f(x)f(x2)f(x)f(x1),即f(x1)f(x2),f(x)f(x3),f(x3)f(x6),f(x)f(x6),即f(x)周期为6,f(2 010)f(63350)f(0)对4f(x)f(y)f(xy)f(xy),令x1,y0,得4f(1)f(0)2f(1),f(0),即f(2 010).11用演绎推理证明函数f(x)|

15、sin x|是周期函数证明大前提:若函数yf(x)对于定义域内的任意一个x值满足f(xT)f(x)(T为非零常数),则它为周期函数,T为它的一个周期小前提:f(x)|sin(x)|sin x|f(x)结论:函数f(x)|sin x|是周期函数12S为ABC所在平面外一点,SA平面ABC,平面SAB平面SBC.求证:ABBC.证明如图,作AESB于E.平面SAB平面SBC,平面SAB平面SBCSB.AE平面SAB.AE平面SBC,又BC平面SBC.AEBC.又SA平面ABC,SABC.SAAEA,SA平面SAB,AE平面SAB,BC平面SAB.AB平面SAB.ABBC.三、探究与创新13设f(x),g(x)(其中a0且a1)(1)523请你推测g(5)能否用f(2),f(3),g(2),g(3)来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广解(1)由f(3)g(2)g(3)f(2),又g(5)因此,g(5)f(3)g(2)g(3)f(2)(2)由g(5)f(3)g(2)g(3)f(2),即g(23)f(3)g(2)g(3)f(2),于是推测g(xy)f(x)g(y)g(x)f(y)证明因f(x),g(x)(大前提),所以g(xy),g(y),f(y)(小前提及结论),所以f(x)g(y)g(x)f(y)g(xy).

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2