ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:157KB ,
资源ID:3238378      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3238378.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(二次函数的图象与性质—巩固练习(基础) (2).doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

二次函数的图象与性质—巩固练习(基础) (2).doc

1、馨雅资源网 一元二次方程的解法(二)配方法知识讲解(提高)责编:常春芳 【学习目标】1了解配方法的概念,会用配方法解一元二次方程;2掌握运用配方法解一元二次方程的基本步骤;3通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力。【要点梳理】知识点一、一元二次方程的解法-配方法1配方法解一元二次方程:(1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:把原方程化为的形式;将常数项移到方程的右边;方程两边同时除以二次

2、项的系数,将二次项系数化为1;方程两边同时加上一次项系数一半的平方;再把方程左边配成一个完全平方式,右边化为一个常数;若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点诠释:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式知识点二、配方法的应用1用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方

3、式后,再运用非负数的性质求出待定字母的取值3用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值4用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用要点诠释: “配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好 【典型例题】类型一、用配方法解一元二次方程1. 用配方法解方程:(1)(2015岳池县模拟)2x24x3=0; (2)(2015春泰山区期中)3x212x3=0.【思路点拨】 方程(1)

4、 (2)的的次项系数不是1,必须先化成1,才能配方,这是关键的一步配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为的形式,然后用直接开平方法求解【答案与解析】解:(1)2x24x3=0,x1=,(2)3x212x3=0,3x212x=3,x24x=1,x24x+4=1+4,(x2)2=5,x2=,x1=2+,x2=2;【点评】配方要注意一次项的符号决定了左边的完全平方式中是两数和的平方还是两数差的平方举一反三:【高清ID号:388499关联的位置名称(播放点名称):用配方法解一般的一元二次方程例2、用配方法解含字母系数的一元二次方程例3】【变式】 用配方法解方程 (1) (2

5、)【答案】(1) .(2)当时,此方程有实数解,;当时,此方程无实数解.类型二、配方法在代数中的应用2. 用配方法证明的值小于0【思路点拨】 本题不是用配方法解一元二次方程,但所用的配方法思想与自己学的配方法大同小异,即思路一致【答案与解析】 , ,即故的值恒小于0【点评】证明一个代数式大于零或小于零,常用方法就是利用配方法得到一个含完全平方式和一个常数的式子来证明 举一反三:【变式】试用配方法证明:代数式的值不小于【答案】 , 即代数式的值不小于3. (2015春宜兴市校级月考)若把代数式x2+2bx+4化为(xm)2+k的形式,其中m,k为常数,则km的最大值是【答案】;【解析】解:x2+2bx+4=x2+2bx+b2b2+4=(x+b)2b2+4;m=b,k=b2+4,则km=(b)2+(b)20,当b=时,km的最大值是故答案为:【点评】此题考查利用完全平方公式配方,注意代数式的恒等变形举一反三:【高清ID号:388499关联的位置名称(播放点名称):配方法与代数式的最值提高练习】【变式】(1)的最小值是 ;(2)的最大值是 . 【答案】(1); 所以的最小值是(2) 所以的最大值是9.4. 分解因式:【答案与解析】【点评】这是配方法在因式分解中的应用,通过添项、配成完全平方式,进而运用平方差公式分解因式学魁网

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2