ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:263.50KB ,
资源ID:3240064      下载积分:7 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3240064.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(初中数学竞赛精品标准教程及练习44:数的整除(二).doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

初中数学竞赛精品标准教程及练习44:数的整除(二).doc

1、初中数学竞赛精品标准教程及练习(44)数的整除(二)一、内容提要第一讲介绍了能被2,3,4,5,7,8,9,11,13,25整除的自然数的特征,本讲将介绍用因式分解方法解答数的整除问题.几个常用的定理,公式,法则:n个连续正整数的积能被n!整除.(n的阶乘:n!123n).例如:a为整数时,2a(a+1),6a(a+1)(a+2), 24a(a+1)(a+2)(a+3), 若a 且ac, 则a(bc).若a,b互质,且ac, bc ,则abc . 反过来也成立:a,b互质,abc,则ac, bc.例如:8和15互质,8a, 15|a, 则120a. 反过来也成立:若120a.则8a, 15|a

2、.由乘法公式(n为正整数)推得:由(ab)(an-1+an-2b+abn-2+bn-1)=anbn . 得 (ab)|(anbn).(a+b)(a2na2n1b+ab2n1+b2n)=a2n+1+b2n+1 . (a+b)|(a2n+1+b2n+1).(a+b)(a2n1a2n2b+ab2n2b2n1)=a2nb2n . (a+b)|(a2nb2n).概括起来:齐偶数次幂的差式a2nb2n含有因式ab和ab.齐奇数次幂的和或差式a2n+1b2n+1或a2n+1b2n+1只分别含有因式ab或ab.例如(a+b)| (a6b6), (ab)| (a8b8); (a+b)|(a5+b5), (ab)

3、|(a5b5).二、例题例1. 已知:整数n2.求证:n55n3+4n能被120整除.证明:n55n3+4nn(n45n2+4)=n(n1)(n+1)(n+2)(n2). (n2) (n1)n(n+1) (n2)是五个连续整数,能被n!整除,120n55n3+4n.例2. 已知:n为正整数.求证:n3+n2+n是3的倍数.证明:n3+n2+nn(2n2+3n+1)=n(n+1)(2n+1) =n(n+1)(n+2+n1)= n(n+1)(n+2)+ n(n+1)(n1).3!n(n+1)(n+2),且3!n(n+1)(n1).3n(n+1)(n+2)+ n(n+1)(n1).即n3+n2+n是

4、3的倍数.(上两例关鍵在于创造连续整数)例3.求证:332551;1989(1990199019881988).证明:255125111113211111.(321)|(3211+111 ) , 即332551.199019901988198819901990198819901988199019881988.(添两项)(19901988)(1990199019881990).即19892(1990199019881990).1988199019881988=19881988(198821)19881988(19881)(19881).即199019901988198819892N1989198

5、819881987.(N是整数)19891990199019881988.例4设n是正整数,求证:7(32n+1+2n+2). 证明:32n+1+2n+2332n+42n=39 n+42 n32n32n(添两项)(42 n32n)(39 n32n)(43)3(9 n2n)72 n3(92)N . (N是整数)7(32n+1+2n+2)(例3,4是设法利用乘法公式)例5. 已知能被33整除,求x,y的值.解:33311,19+x+y+8+7其和是3的倍数,即x+y=3K25 (k为整数).又(1x+8)(9+y+7)其差是11的倍数,即xy=11h+7(h是整数).0x9,0y9,0xy18,9

6、xy9,x+yxy, 且 x+y和xy同是奇数或偶数.符合条件的有.解得.例6.设N,且17N, 求x.解:N2078100x=171224176x2x17(1226x)+42x.17N,1742x ,当 42x=0. x=2.三、练习441. 要使2n+1能被3整除,整数n应取,若6(5 n1), 则整数n应取.2. 求证:4!|(n4+2n3n22n); 24n(n21)(3n+2);6(n3+11n); 30(n 5n).3. 求证:10099101);57(2333372222);995(996996994994);1992(997997995995).4. 设n是正整数,求证3 n+

7、3n+2+62n能被33整除.5. 求证:六位数能被7,11,13,整除.6. 已知:五位数能被77整除,求x,y的值.7. 已知:a,b,c都是正整数,且6(a+b+c).求证:6(a3+b3+c3).三、练习44参考答案:1. 正奇数;正偶数2. ,分解为4个连续整数n(n-1)(n+1)+12n n(n-1)(n+1)(n2-4+5)3. 81111491111添项1,1添项9959979959974. 化为3n(1+32)+36n=113n36 n3n5. 711131001六位数105a+104b+103c+102a+10b+c=6. 仿例57. 由6(a+b+c)可知a,b,c中至少有一个是偶数,且a3+b3+c33abc含有因式a+b+c3

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2