ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:1.84MB ,
资源ID:3256446      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3256446.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(1991考研数学一真题及答案解析(1).doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

1991考研数学一真题及答案解析(1).doc

1、 Born to win1991年全国硕士研究生入学统一考试数学一试题一、填空题(本题满分15分,每小题3分.)(1) 设 则=_.(2) 由方程所确定的函数在点处的全微分=_.(3) 已知两条直线的方程是;,则过且平行于的平面方程是_.(4) 已知当时,与是等价无穷小,则常数=_.(5) 设4阶方阵,则的逆阵=_.二、选择题(本题满分15分,每小题3分.)(1) 曲线 ( )(A) 没有渐近线 (B) 仅有水平渐近线(C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线(2) 若连续函数满足关系式,则等于 ( ) (A) (B) (C) (D) (3) 已知级数,则级数等于 ( ) (

2、A) 3 (B) 7 (C) 8 (D) 9 (4) 设是平面上以(1,1)、(-1,1)和(-1,-1)为顶点的三角形区域,是在第一象限的部分,则等于 ( ) (A) (B) (C) (D) 0 (5) 设阶方阵、满足关系式,其中是阶单位阵,则必有 ( ) (A) (B) (C) (D) 三、(本题满分15分,每小题5分.)(1) 求.(2) 设是曲面在点处的指向外侧的法向量,求函数在点处沿方向的方向导数.(3) ,其中是由曲线绕轴旋转一周而成的曲面与平面所围成的立体.四、(本题满分6分)在过点和的曲线族中,求一条曲线,使沿该曲线从到的积分的值最小.五、(本题满分8分.)将函数展开成以2为周

3、期的傅立叶级数,并由此求级数的和.六、(本题满分7分.)设函数在0,1上连续,(0,1)内可导,且,证明在(0,1)内存在一点,使.七、(本题满分8分.)已知,及.(1) 、为何值时,不能表示成的线性组合?(2) 、为何值时,有的唯一的线性表示式?并写出该表示式.八、(本题满分6分)设为阶正定阵,是阶单位阵,证明的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点处的曲率等于此曲线在该点的法线段长度的倒数(是法线与轴的交点),且曲线在点(1,1)处的切线与轴平行.十、填空题(本题满分6分,每小题3分.)(1) 若随机变量服从均值为2,方差为的正态分布,且,则=_.(2)

4、 随机地向半圆(为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与轴的夹角小于的概率为_.十一、(本题满分6分)设二维随机变量的概率密度为 ,求随机变量的分布函数.1991年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题满分15分,每小题3分.)(1)【答案】【解析】这是个函数的参数方程,满足参数方程所确定函数的微分法,即如果 , 则 .所以 ,再对求导,由复合函数求导法则得.(2)【答案】【解析】这是求隐函数在某点的全微分,这里点的含义是.将方程两边求全微分,由一阶全微分形式不变性得,再由全微分四则运算法则得 ,令,得,即.(3)【答案】【解析】

5、所求平面过直线,因而过上的点;因为过平行于,于是平行于和的方向向量,即平行于向量和向量,且两向量不共线,于是平面的方程,即.(4)【答案】【解析】因为当时,当时,所以有所以 .因为当时,与是等价无穷小,所以,故.(5)【答案】.【解析】为求矩阵的逆可有多种办法,可用伴随,可用初等行变换,也可用分块求逆.根据本题的特点,若知道分块求逆法,则可以简单解答.注意: ,.对于2阶矩阵的伴随矩阵有规律:,则求的伴随矩阵.如果,这样.再利用分块矩阵求逆的法则:,易见.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】由于函数的定义域为,所以函数的间断点为,所以为铅直渐近线,

6、所以为水平渐近线.所以选(D).【相关知识点】铅直渐近线:如函数在其间断点处有,则是函数的一条铅直渐近线;水平渐近线:当,则为函数的水平渐近线.(2)【答案】(B)【解析】令,则,所以,两边对求导,得,这是一个变量可分离的微分方程,即.解之得,其中是常数.又因为,代入,得,得,即.(3)【答案】(C)【解析】因为 (收敛级数的结合律与线性性质),所以 .而 ,故应选(C).(4)【答案】(A)【解析】如图,将区域分为四个子区域.显然,关于轴对称,关于轴对称.令 ,由于对及对都是奇函数,所以 .而对是偶函数,对是奇函数,故有,所以 ,故选(A).(5)【答案】(D)【解析】矩阵的乘法公式没有交换

7、律,只有一些特殊情况可以交换.由于、均为阶矩阵,且,对等式两边取行列式,据行列式乘法公式,得到、,知、均可逆,那么,对于,先左乘再右乘有 ,故应选(D).其实,对于先右乘再左乘,有.三、(本题满分15分,每小题5分.)(1)【解析】这是型未定式求极限.令,则时,所以,所以 .因为当时,所以 ,故 .(2)【解析】先求方向的方向余弦,再求,最后按方向导数的计算公式求出方向导数.曲面在点处的法向量为,在点处指向外侧,取正号,并单位化得 又 ,所以方向导数.(3)【解析】由曲线绕轴旋转一周而围成的旋转面方程是.于是,是由旋转抛物面与平面所围成.曲面与平面的交线是.选用柱坐标变换,令,于是,因此 .四

8、、(本题满分6分)【解析】曲线,则,所以 .对关于的函数两边对求导数,其中,并令得.所以,且 .故为函数的极小值点,也是最小值点.故所求的曲线为.五、(本题满分8分.)【解析】按傅式级数公式,先求的傅式系数与.因为偶函数,所以 , ,.因为在区间上满足狄利克雷收敛定理的条件,所以 .令,有,所以,.又 ,所以, ,即 .六、(本题满分7分.)【解析】由定积分中值定理可知,对于,在区间上存在一点使得,即.由罗尔定理可知,在区间内存在一点,使得.七、(本题满分8分)【解析】设,按分量写出,则有.对方程组的增广矩阵作初等行变换:第一行分别乘以有、加到第三行和第四行上,再第二行乘以、加到第三行和第四行

9、上,有,所以,当时,方程组无解.即是不存在使得成立,不能表示成的线性组合;当时,方程组有唯一解,故有唯一表达式,且.【相关知识点】非齐次线性方程组有解的判定定理:设是矩阵,线性方程组有解的充分必要条件是系数矩阵的秩等于增广矩阵的秩,即是(或者说,可由的列向量线表出,亦等同于与是等价向量组).设是矩阵,线性方程组,则(1) 有唯一解 (2) 有无穷多解 (3) 无解 不能由的列向量线表出.八、(本题满分6分)【解析】方法1:因为为阶正定阵,故存在正交矩阵,使,其中,是的特征值.因此 两端取行列式得 ,从而 .方法2:设的个特征值是由于为阶正定阵,故特征值全大于0.由为的特征值可知,存在非零向量使

10、,两端同时加上,得.按特征值定义知是的特征值.因为的特征值是它们全大于1,根据,知.【相关知识点】阵特征值与特征向量的定义:设是阶矩阵,若存在数及非零的维列向量使得成立,则称是矩阵的特征值,称非零向量是矩阵的特征向量.九、(本题满分8分)【解析】曲线在点处的法线方程为 (当时),它与轴的交点是,从而.当时,有,上式仍然成立.因此,根据题意得微分方程,即.这是可降阶的高阶微分方程,且当时,.令,则,二阶方程降为一阶方程,即.即,为常数.因为当时,所以,即,所以.分离变量得 .令,并积分,则上式左端变为 .因曲线在上半平面,所以,即.故 .当时, 当前取+时, ;当前取时,;所以 .十、填空题(本

11、题满分6分,每小题3分.)(1)【解析】一般说来,若计算正态分布随机变量在某一范围内取值的概率,应该已知分布的两个参数和,否则应先根据题设条件求出,再计算有关事件的概率,本题可从,通过查表求出,但是注意到所求概率即是与之间的关系,可以直接由的值计算出.因为,所以可标准化得 ,由标准正态分布函数概率的计算公式,有,.由正态分布函数的对称性可得到 .(2)【解析】设事件=“掷的点和原点的连线与轴的夹角小于”,O这是一个几何型概率的计算问题.由几何概率公式,而 ,故 .十一、(本题满分6分)【解析】二维连续型随机变量的概率等于对应区域的二重积分,所以有O.当时,.因为在直线的下方与(即第一象限)没有公共区域,所以.当时,在直线的上方与第一象限相交成一个三角形区域,此即为积分区间.所以的分布函数

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2