ImageVerifierCode 换一换
格式:DOC , 页数:18 ,大小:2.02MB ,
资源ID:33007      下载积分:13 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/33007.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023学年福建省莆田市第二十四中学高三3月份模拟考试数学试题(含解析).doc)为本站会员(sc****y)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023学年福建省莆田市第二十四中学高三3月份模拟考试数学试题(含解析).doc

1、2023学年高考数学模拟测试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线,F为抛物线的焦点且MN为过焦点的弦,若,则的面积为( )ABCD2若,点C在AB上,且,设,则的值为( )ABCD3已知函数的最大值为,若存在实数,使得对任意实数总有成立,则的最小值为( )ABCD4设是虚数单位,若复数,则(

2、)ABCD5将函数的图像向左平移个单位长度后,得到的图像关于坐标原点对称,则的最小值为( )ABCD6已知m为实数,直线:,:,则“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件7根据散点图,对两个具有非线性关系的相关变量x,y进行回归分析,设u= lny,v=(x-4)2,利用最小二乘法,得到线性回归方程为=0.5v+2,则变量y的最大值的估计值是( )AeBe2Cln2D2ln28的展开式中各项系数的和为2,则该展开式中常数项为A-40B-20C20D409已知为坐标原点,角的终边经过点且,则( )ABCD10设、是两条不同的直线,、是两个不同的平面,则的

3、一个充分条件是( )A且B且C且D且11已知为虚数单位,实数满足,则 ( )A1BCD12已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的常数项为_.14如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,则双曲线的离心率是_.15已知(且)有最小值,且最小值不小于1,则的取值范围为_.16已知椭圆:的左、右焦点分别为,如图是过且垂直于长轴的弦,则的内切圆方程是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)

4、 2018石家庄一检已知函数(1)若,求函数的图像在点处的切线方程;(2)若函数有两个极值点,且,求证:18(12分)在直角坐标系中,已知直线的直角坐标方程为,曲线的参数方程为(为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线和直线的极坐标方程;(2)已知直线与曲线、相交于异于极点的点,若的极径分别为,求的值.19(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.()求证:平面平面; ()若,求二面角的余弦值.20(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面. (1)求证: 是的中点;(2)在

5、上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.21(12分)设函数.()当时,求不等式的解集;()若函数 的图象与直线所围成的四边形面积大于20,求的取值范围.22(10分)如图,在四棱锥中,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二面角的余弦值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】根据可知,再利用抛物线的焦半径公式以及三角形面积公式求解即可.【题目详解】由题意可知抛物线方程为,设点点,则由抛物线定义知,则.由得,则.又MN为过焦

6、点的弦,所以,则,所以.故选:A【答案点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.2、B【答案解析】利用向量的数量积运算即可算出【题目详解】解:,又在上,故选:【答案点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用3、B【答案解析】根据三角函数的两角和差公式得到,进而可以得到函数的最值,区间(m,n)长度要大于等于半个周期,最终得到结果.【题目详解】函数 则函数的最大值为2,存在实数,使得对任意实数总有成立,则区间(m,n)长度要大于等于半个周期,即 故答案为:B.【答案点睛】这个题目考查了三角函数的两角和差的正余弦公式的应

7、用,以及三角函数的图像的性质的应用,题目比较综合.4、A【答案解析】结合复数的除法运算和模长公式求解即可【题目详解】复数,则,故选:A.【答案点睛】本题考查复数的除法、模长、平方运算,属于基础题5、B【答案解析】由余弦的二倍角公式化简函数为,要想在括号内构造变为正弦函数,至少需要向左平移个单位长度,即为答案.【题目详解】由题可知,对其向左平移个单位长度后,其图像关于坐标原点对称故的最小值为故选:B【答案点睛】本题考查三角函数图象性质与平移变换,还考查了余弦的二倍角公式逆运用,属于简单题.6、A【答案解析】根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可【题目详解】当

8、m=1时,两直线方程分别为直线l1:x+y1=0,l2:x+y2=0满足l1l2,即充分性成立,当m=0时,两直线方程分别为y1=0,和2x2=0,不满足条件当m0时,则l1l2,由得m23m+2=0得m=1或m=2,由得m2,则m=1,即“m=1”是“l1l2”的充要条件,故答案为:A【答案点睛】(1)本题主要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.7、B【答案解析】将u= lny,v=(x-4)2代入线性回归方程=-0.5v

9、+2,利用指数函数和二次函数的性质可得最大估计值.【题目详解】解:将u= lny,v=(x4)2代入线性回归方程=0.5v+2得:,即,当时,取到最大值2,因为在上单调递增,则取到最大值.故选:B.【答案点睛】本题考查了非线性相关的二次拟合问题,考查复合型指数函数的最值,是基础题,.8、D【答案解析】令x=1得a=1.故原式=的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40 ,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选

10、2个提出,选3个提出x.故常数项=-40+80=409、C【答案解析】根据三角函数的定义,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出结果.【题目详解】根据题意,解得,所以,所以,所以.故选:C.【答案点睛】本题考查三角函数定义的应用和二倍角的正弦公式,考查计算能力.10、B【答案解析】由且可得,故选B.11、D【答案解析】 ,则 故选D.12、D【答案解析】设,整理得到方程组,解方程组即可解决问题【题目详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【答案点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题二、填空题

11、:本题共4小题,每小题5分,共20分。13、160【答案解析】先求的展开式中通项,令的指数为3即可求解结论.【题目详解】解:因为的展开式的通项公式为:;令,可得;的展开式中的常数项为:.故答案为:160.【答案点睛】本题考查二项式系数的性质,关键是熟记二项展开式的通项,属于基础题14、【答案解析】根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【题目详解】,为中点,垂直平分,即,即.故答案为:【答案点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.15、【答案解析】真数有最小值,根据已知可得的范围,求出函数的最小值,建立关于的不等量关系,求

12、解即可.【题目详解】,且(且)有最小值,的取值范围为.故答案为:.【答案点睛】本题考查对数型复合函数的性质,熟练掌握基本初等函数的性质是解题关键,属于基础题.16、【答案解析】利用公式计算出,其中为的周长,为内切圆半径,再利用圆心到直线AB的距离等于半径可得到圆心坐标.【题目详解】由已知,设内切圆的圆心为,半径为,则,故有,解得,由,或(舍),所以的内切圆方程为.故答案为:.【答案点睛】本题考查椭圆中三角形内切圆的方程问题,涉及到椭圆焦点三角形、椭圆的定义等知识,考查学生的运算能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1) (2)见解析【答案解析

13、】试题分析:(1)分别求得和,由点斜式可得切线方程;(2)由已知条件可得有两个相异实根,进而再求导可得,结合函数的单调性可得,从而得证.试题解析:(1)由已知条件,当时,当时,所以所求切线方程为 (2)由已知条件可得有两个相异实根,令,则,1)若,则,单调递增,不可能有两根;2)若,令得,可知在上单调递增,在上单调递减,令解得,由有,由有,从而时函数有两个极值点,当变化时,的变化情况如下表单调递减单调递增单调递减因为,所以,在区间上单调递增,另解:由已知可得,则,令,则,可知函数在单调递增,在单调递减,若有两个根,则可得,当时, ,所以在区间上单调递增,所以18、(1),.(2)【答案解析】(

14、1)先将曲线的参数方程化为直角坐标方程,即可代入公式化为极坐标;根据直线的直角坐标方程,求得倾斜角,即可得极坐标方程.(2)将直线的极坐标方程代入曲线、可得,进而代入可得的值.【题目详解】(1)曲线的参数方程为(为参数),消去得,把,代入得,从而得的极坐标方程为,直线的直角坐标方程为,其倾斜角为,直线的极坐标方程为.(2)将代入曲线的极坐标方程分别得到,则.【答案点睛】本题考查了参数方程化为普通方程的方法,直角坐标方程化为极坐标方程的方法,极坐标的几何意义,属于中档题.19、()详见解析;().【答案解析】()由正方形的性质得出,由平面得出,进而可推导出平面,再利用面面垂直的判定定理可证得结论;()

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2