ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:31KB ,
资源ID:3405506      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3405506.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(抽屉原理.doc)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

抽屉原理.doc

1、抽屉原理教学设计教学内容:义务教育课程标准实验教科书六年级下册抽屉原理。教学目标:1.知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。2.过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。3.情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。教具学具:课件、扑克牌、每组都有相应数量的笔筒、铅笔、书,各小组备好自己的记分牌。教学过程:一、创设情景 导入新课师:同学们,昨天晚上与爸爸

2、、妈妈做过导学案中的扑克牌游戏吗?取出两张王牌,在剩下的52张扑克牌中任意取出5张,我不看牌,我敢肯定的说:这5张牌至少有两张是同花色,大家相信吗?(师生演示) 师生共同做两轮抽牌游戏,让没有做过游戏的同学观察、思考、验证师:为什么会出现这种情况呢?如何解释呢?今天我们就来探索这其中的规律抽屉原理教师板书:抽屉原理二、自主操作 探究新知(一)活动1课件出示:把4枝铅笔放到3个笔筒里,可以怎么放?师:你们摆摆看,会有什么发现?把你们发现的结果用自己喜欢的方式记录下来。1、学生动手操作,师巡视,了解情况。2、汇报交流 说理活动学生动手操作,教师巡视,了解情况,并参与到较弱的小组中适当点拨:要把所有

3、可能的情况摆出来一个小组上台展示,四人操作,一人同时解说,教师协助学生将记录放在投影机上展示比较教师展示数组的形式(4,0,0)(3,1,0)(2,2,0)(2,1,1),让学生比较认识到数组形式的简洁)引导学生再认真观察记录,还有什么发现?并请刚才展示的小组回答板书:总有一个笔筒里至少有2枝铅笔。怎样摆可以一次得出结论?(启发学生用平均分的摆法,引出用除法计算。)板书:43=1(枝)1(枝)这样摆挺麻烦,那么怎样摆可以一次得出结论?各组摆摆、想想。 课件出示 把5枝铅笔放进4个笔筒里呢?:把6枝铅笔放进5个笔筒呢?把7枝铅笔放进6个笔筒呢?把10枝铅笔放进9个笔筒呢?把100枝铅笔放进99个

4、笔筒呢?板书:76=1(枝)1(枝)109=1(枝)1(枝)10099=1(枝)1(枝)观察这些算式你发现了什么规律?预设学生说出:至少数=商+余数师:是不是这个规律呢?我们来试一试吧!3、深化探究 得出结论深化探究,教师出示课件:把5枝铅笔放到3个笔筒里,总有一个笔筒里至少有几枝铅笔?为什么?学生活动交流说理活动预设知识冲突:生1:用商加余数,应该总有一个笔筒里至少有3枝铅笔生2:不同意!不是“商加余数”是“商加1”.师:到底是“商加余数”还是“商加1”?谁的结论对呢?在小组里进行研究、讨论。师:板书:53=1(枝)2(枝)至少数=商+1谁能用准确的语言表达清楚?(二)活动二课件出示:把5本

5、书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?1、分组操作后汇报学生展示52=2(本)1(本)72=2(本)1(本)92=2(本)1(本)2、那么探究到现在,大家认为怎样才能确定总有一个抽屉至少有几本书?(至少数=商+1)3、师:在这类问题中,至少数=商+1,这个规律就是有趣的“抽屉原理”,(点题)。“抽屉原理”又称“鸽笼原理”,最先是由19世纪德国数学家狄里克雷提出的,所以又称“狄里克雷原理”。这一原理在实际问题中有着广泛的应用。用它可以解决许多有趣的问题,让我们来试试好吗?三、灵活应用 解决问题1、解释课前提出的游戏问题。2、课件出示:8只鸽子飞回3个鸽舍,不管怎样分,总有一个

6、鸽舍至少有几只鸽子?3、课件出示:任意13人中,至少有两人的出生月份相同。为什么?4、课件出示:任意367名学生中,一定存在两名学生,他们在同一天过生日。为什么?四、畅谈感受 教学结束同学们,今天这节课有什么感受?(抽生谈谈,师总结。)狄利克雷出生于一个具有法兰西血统的家庭.先在迪伦学习, 后来到哥廷根受业于高斯.1822-1827旅居巴黎当家庭教师,在此期间他参加了以傅里叶为首的青年数学家小组的活动,深受傅里叶学术思想的影响.1827在波兰布雷斯劳大学任讲师.从1839连起任柏林大学教授.1855年,高斯逝世后.他作为高斯的继承者被哥廷根聘任为教授,直至逝世.他1831年被选为普鲁士科学院院

7、士,1855年被选为英国皇家学会会员.狄利克雷是高斯的学生和继承人.他毕生敬仰高斯,对高斯的算术研究爱不释手,即使在旅行中也总是随身携带并反复研究,睡觉前他总要努力阅读一些难懂的段落,睡觉时把它放在枕头下面,希望在夜里醒来,重读一下,这些段落就清楚了.在1849年7月16日,哥廷根大学为高斯获得博士学位50周年举行庆 祝 会, 席间高斯要用算术研究的一页原稿点烟,狄利克雷发现之后不胜惊恐,立即冒失的从高斯手中夺了过来,并终生加以珍藏。在数学中以他的姓氏命名的有:狄利克雷函数、狄利克雷级数、狄利克雷系数、狄利克雷指数、狄利克雷数据、狄利克雷型、狄利克雷抽屉原理、狄利克雷变分问题、狄利克雷除数问题、狄利克雷代数、狄利克雷范数、狄利克雷分布、狄利克雷积分、狄利克雷核、狄利克雷空间、狄利克雷间断乘子、狄利克雷铺砌、狄利克雷区域、狄利克雷特征标、狄利克雷原理,以及多种狄利克雷定理等等.

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2