ImageVerifierCode 换一换
格式:PPTX , 页数:42 ,大小:930.99KB ,
资源ID:3447861      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3447861.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学模型-第01章(第五版).pptx)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

数学模型-第01章(第五版).pptx

1、用数学方法解决任何一个实际问题,都必须在实际与数学之间架设一座桥梁.,数学各门科学的基础;社会进步的工具.,解决过程实际问题转化为数学问题;数学问题的求解;数学解答回归实际问题.,这个全过程称为数学建模为实际问题建立数学模型.,第一章 建立数学模型,1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 建模示例之一 包饺子中的数学1.4 建模示例之二 路障间距的设计1.5 建模示例之三 椅子能在不平的 地面上放稳吗1.6 数学建模的基本方法和步骤1.7 数学模型的特点和分类1.8 怎样学习数学建模学习课程 和参加竞赛,第 一章 建立数学模型,玩具、照片、飞机、火箭模型,实物模型,水箱中

2、的舰艇、风洞中的飞机,物理模型,地图、电路图、分子结构图,符号模型,模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物.,模型集中反映了原型中人们需要的那一部分特征.,1.1 从现实对象到数学模型,我们常见的模型,你碰到过的数学模型“航行问题”,用 x 表示船速,y 表示水速,列出方程:,答:船速为20km/h.,甲乙两地相距750km,船从甲到乙顺水航行需30h,从乙到甲逆水航行需50h,问船的速度是多少?,x=20y=5,航行问题建立数学模型的基本步骤,作出简化假设(船速、水速为常数),用符号表示有关量(x,y分别表示船速和水速),用物理定律(匀速运动的距离等于速

3、度乘以 时间)列出数学式子(二元一次方程),求解得到数学解答(x=20,y=5),回答原问题(船速为20km/h),数学模型(Mathematical Model)和数学建模(Mathematical Modeling),对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学表述.,建立数学模型的全过程(包括表述、求解、解释、检验等),数学模型,数学建模,欧几里德,几何原本,光反射定律,阿基米德,浮力定律,杠杆原理,伽利略,牛顿,落体定律,惯性原理,万有引力定律,微积分,数学建模历史悠久,直到20世纪后半叶数学建模才逐渐得到普遍重视和广泛应用

4、,并且进入大学的课堂.,1.2 数学建模的重要意义,计算机技术的出现和迅速发展,为数学建模的应用 提供了强有力的工具.,数学迅速进入一些诸如经济、生态、人口、地质等 领域,为数学建模开拓了许多新的处女地.,科技进步与社会发展的推动,高新技术中数学建模与科学计算是必不可少的手段 数学科学是关键的、普遍的、可应用的技术.,数学建模引入教学顺应时代发展的潮流,数学建模的具体应用,分析与设计,预报与决策,控制与优化,规划与管理,数学建模,计算机技术,知识经济,为教育改革注入强大活力,数学教育本质上是一种素质教育.,数学教育应培养两种能力:算数学(计算、推导、证明)和用数学(分析、解决实际问题).,传统

5、的数学教学体系和内容偏重前者,忽略后者.,让学生参加将数学应用于实际的尝试,参与发现 和创造的过程.,数学建模引入教学符合教育改革的需要,传统的数学教学体系和内容偏重前者,忽略后者.,通常,1kg馅,1kg面,包100个饺子.,问题,分析,直观认识“大饺子包的馅多”!,但是:“用的面皮也多”!,需要比较:饺子从小变大时馅和面增加的数量关系.,今天,馅比 1kg多,1kg面不变,要把馅包完.,应多包几个(每个小些),还是少包几个(每个大些)?,1.3 建模示例之一 包饺子中的数学,体积V、面积S一个大饺子,V和 nv 哪个大?,V比 nv大多少?,定性分析,定量结果,分析,建立馅、皮与数学概念的

6、联系:,馅体积,皮表面积,体积v、面积sn个小饺子,1.皮的厚度一样,2.饺子的形状一样,R 大皮半径,r 小皮半径,(1),(2),(3),假设,建模,消去S,s,k,体积与面积的联系半径(特征半径),解释,V 比 nv 大(n1)大饺子包得馅多.,定性分析,定量结果,若100个饺子包1kg馅,50个饺子能包多少馅?,应用,n1=100,n2=50,50个饺子能包1.4kg馅.,n1v1=1(kg),n2v2=?,n2v2=,讨论,饺子数量减少一倍,真的就能多包40%的馅吗?,饺子越大,面皮应该越厚.,若100个饺子包1kg馅,50个饺子能包1.4kg馅.,可以对“皮的厚度随着半径变大而增加”的数量关系作出合理、简化的假设,重新建模.,用数学语言(体积和表面积)表示现实对象(馅和皮).,作出简化、合理的假设(厚度一样,形状一样).,利用问题蕴含的内在规律(体积和表面积与半径间 的几何关系).,包饺子建模过程的基本、关键步骤,日常生活中有哪些可用这个模型解释的现象?,校园、居民小区道路需要限制车速设置路障,限制车速40km/h,相距多远设置一个路障?,汽车过路障时速度接近零,过路障后加速.,车速达到40km/h时让司机看到下一路障而减速,至路障处车速又接近零.,如此循环以达到限速的目的.,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2