ImageVerifierCode 换一换
格式:PPTX , 页数:44 ,大小:2.16MB ,
资源ID:3449088      下载积分:2 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3449088.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(7.1.2 弧度制.pptx)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

7.1.2 弧度制.pptx

1、高中同步学案优化设计,GAO ZHONG TONG BU XUE AN YOU HAU SHE JI,第7章,2021,内容索引,课前篇 自主预习,课堂篇 探究学习,1.结合具体实例了解弧度制的概念.(数学抽象)2.能进行角度与弧度之间的互化.(数学运算)3.理解弧度制下弧长与面积公式.(数学运算),课前篇 自主预习,情境导入,在日常生活中,一个量可用不同的标准来度量,从而也就有了不同的单位以及单位之间的换算.例如:长度既可以用米、厘米来度量,也可以用尺、寸来度量;面积可以用平方米来度量,也可以用公顷来度量.常用的温度度量也有两种:一种是摄氏度,它的发明者是瑞典的安德斯摄尔修斯,它的标准是“在

2、1标准大气压下,纯净的冰水混合物的温度为0摄氏度,水的沸点为100摄氏度,其间平均分为100份,每一等份为1摄氏度,记作1”;另一种是华氏温度,是德国人华伦海特以水银为测温介质发明的,它的标准是“把纯水的冰点温度定为32,把标准大气压下水的沸点温度定为212,中间分为180等份,每一等份代表1华氏度,记作1”.类似地,角除了使用角度来度量外,还可以用本节要学习的弧度来度量.,知识点拨,一、度量角的两种制度,微思考 在大小不同的圆中,长度为1的弧所对的圆心角相等吗?提示 不相等.因为弧长等于1,在大小不同的圆中,由于半径不同,圆心角也不同.,微判断(1)1弧度指的是1度的角.()(2)每个弧度制

3、的角,都有唯一的角度制的角与之对应.()答案(1)(2),二、弧度数的计算与互化1.弧度数的计算,微练习 下列换算结果错误的是(),答案 C,解析-150化成弧度是-,故C项错误.,2.弧度与角度的互化,名师点析 1.用弧度为单位表示角的大小时,“弧度”或“rad”可以略去不写,只写这个角对应的弧度数即可,如角=-3.5 rad可写成=-3.5.而用角度为单位表示角的大小时,“度”或“”不可以省略.,微思考 对于角度制和弧度制,在具体的应用中,两者可混用吗?如何书写才是规范的?,提示 角度制与弧度制是两种不同的度量制度,在表示角时不能混用,例如=k360+(kZ),=2k+60(kZ)等写法都

4、是不规范的,应写为=k360+30(kZ),=2k+(kZ).,三、弧度制下的弧长与扇形面积公式设扇形的半径为r,弧长为l,为其圆心角,则,名师点析 在弧度制与角度制下,弧长公式和扇形的面积公式的区别,两者相比较,弧度制下的弧长公式和扇形的面积公式具有更为简单的形式,其记忆和应用更易操作,如果已知角是以“度”为单位,则必须先把它化成弧度后再计算,这样可避免计算过程或结果出错.,微练习 已知扇形的半径r=30,圆心角=,则该扇形的弧长等于,面积等于,周长等于.,答案 57560+5,课堂篇 探究学习,例1将下列角度数化为弧度数.(1)1115;(2)252.,要点笔记“180=弧度”是进行“弧度

5、数”与“角度数”换算的关键,在此基础,变式训练1将下列弧度数化为角度数.,例2将下列各角化为2k+(02,kZ)的形式,并判断其是第几象限角.,(2)-315;(3)-1 485.,要点笔记本题应先将度化为弧度,然后再化为2k+(02,kZ)的形式,最后根据象限角的概念判断其是第几象限角.,-7200,-720k360+1080,kZ,k=-2或k=-1.-720到0的范围内与1终边相同的角是-612角和-252角.,-7200,-720k360-600,kZ,k=-1或k=0.-720到0的范围内与2终边相同的角是-420角和-60角.,例3用弧度制分别表示终边落在阴影部分的角的集合(不包括

6、边界).,反思感悟1.用弧度表示区域角,实质上是角度表示区域角在弧度制下的应用,必要时,需进行角度与弧度之间的换算,注意单位要统一.2.在表示角的集合时,可以先写出0,2)内的一个角(或写出(-,内的一个角),再加上2k,kZ.,变式训练3如图,用弧度制将下列落在图示部分的角(阴影部分),用集合表示出来(不包括边界).,例4已知扇形OAB的圆心角为120,半径r=6,求弧长及扇形面积.,变式训练4扇形OAB的面积是4 cm2,它的周长是8 cm,求扇形的圆心角(正角)及弦AB的长.,解 设扇形的半径为r cm,弧长为l cm,扇形的圆心角(0),弧长为l=|r=r,|AB|=22sin 1=4

7、sin 1(cm).,一题多解:与弧度有关的实际应用问题典例在一般的时钟上,自0时开始到分针与时针再一次重合,分针所转过的角的弧度数是多少?(不考虑旋转方向),反思感悟 两种方法得出的结果相同,其解答过程都是正确的,只不过解题的角度不同而已.方法1是从时针与分针所走的时间相等方面列出方程求解;而方法2则从时针与分针所转过的弧度数入手,当分针与时针再次重合时,分针所转过的弧度数比时针所转过的弧度数多2,利用时针和分针的旋转速度之间的关系列出方程求解.,A.75B.125C.135D.155,答案 C,2.用弧度制表示与150角的终边相同的角的集合为(),答案 D,3.时钟的分针在1点到3点20分这段时间里转过的弧度为(),答案 B,4.在扇形中,已知半径为8,弧长为12,则圆心角是弧度,扇形面积是.,5.已知两角和为1弧度,且两角差为1,则这两个角的弧度数分别是、.,更多精彩内容请登录志鸿优化网http:/www.zhyh.org/,本 课 结 束,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2