ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:985.60KB ,
资源ID:347140      下载积分:10 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/347140.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(大变形条件下的预应力索桁架天线结构优化设计_朱继宏.pdf)为本站会员(哎呦****中)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

大变形条件下的预应力索桁架天线结构优化设计_朱继宏.pdf

1、第39卷第1期2023年2月Electro-Mechanical Engineering专家论坛DOI:10.19659/j.issn.10085300.2023.01.003大变形条件下的预应力索桁架天线结构优化设计*朱继宏,李祥吉,王杰,张卫红(西北工业大学航宇材料结构一体化设计与增材制造装备技术国际联合研究中心,陕西 西安 710072)摘要:传统预应力索桁架天线结构设计往往依赖于经验设计和非梯度方法。为了提高该类结构的优化设计效率,文中提出了一种大变形条件下的预应力索桁架结构拓扑优化方法。该方法以一种预应力修正下的柔顺度指标作为目标函数,以质量分数和强度作为优化约束,通过归一化方法获得

2、连续的设计变量,实现对索桁架结构的拓扑构型、组件尺寸和预应力数值的整体优化设计。目标函数的灵敏度信息可完全通过解析方法获得。数值计算结果表明,该方法对大变形条件下天线单一工况和多工况预应力索桁架优化设计都具有较好的适用性。关键词:索桁架天线结构;拓扑优化;预应力设计;几何非线性中图分类号:TN82文献标识码:A文章编号:10085300(2023)01002106Optimization Design of Prestressed Cable-truss Antenna Structureunder Large Deformation ConditionsZHU Jihong,LI Xiang

3、ji,WANG Jie,ZHANG Weihong(State IJR Center of Aerospace Design and Additive Manufacturing,NorthwesternPolytechnical University,Xian 710072,China)Abstract:The traditional design of prestressed cable-truss antenna structure used to depend on the empir-ical design and non-gradient method.In order to im

4、prove the optimization design efficiency of this kind ofstructure,a topology optimization method for the prestressed cable-truss structure under large deformationconditions is proposed in this paper.This method takes a kind of compliance index modified by prestress as theobjective function,the mass

5、fraction and strength as the optimization constraints and obtains the continuousdesign variables through the normalization method.Finally,the overall optimization design for the topologicalconfiguration,structural size and prestress value of the cable-truss structure is achieved.The sensitivity info

6、r-mation of the objective function can be obtained completely by the analytical method.The numerical resultsshow that the method has good applicability to the optimization design of prestressed cable-truss antennaunder both single and multiple load cases under large deformation conditions.Key words:

7、cable-truss antenna structure;topology optimization;prestress design;geometric nonlinearity引言预应力索桁架结构凭借其优异的特性,广泛应用于各式各样的天线阵面支架、空间折展机构和张拉整体结构中15。因其柔性和大尺寸特点,预应力拉索存在大变形几何非线性行为,给该类结构的优化设计带来了极大的困难。此外,随着载荷工况的改变,结构中预应力拉索的应力状态也会发生变化,受压状态的拉索将无法发挥承载作用,对这一点在面向多变工况的设计过程中也应给予足够的关注。在现有针对预应力索桁架结构优化设计的研究中,对于小规模且形式简

8、单的结构,大多采用经验设计结合校核分析的工程方法6,对于拓扑构型确定的索桁架结构,也可以采用结构力法对索桁架的尺寸和预应力数值进行设计78,而对于未知拓扑构型的索桁架结构,主流的研究思路是借助各种非梯度算法,将预应力拉索和桁架作为离散选择问题进行优化设计9。然而,随着索桁架结构的空间形式趋于大规模化和复杂化10,非梯度算法计算效率低,设计计算代价极大。拓扑优化和基于解析灵敏度的梯度方法是解决该类问题的可行选择11。在此基础上,学者们实现了小变形条件下索桁架结构和大变形条件下纯索网结构的拓扑优化设计1213。*收稿日期:2023021421专家论坛2023年2月本文以一个地基天线背板支架为例,针

9、对单一工况和多工况分别进行了优化设计,并进行了相应的强度计算,旨在提供一种大变形条件下预应力索桁架结构整体设计方法,使用梯度算法获取优化构型的拓扑形式、截面尺寸和预应力数值。1优化问题简述为了寻找大变形条件下具有最大刚度(即柔顺度最低)的预应力索桁架并对其进行优化设计,本文以一个包含N个单元的索桁架结构有限元模型为例,其基础优化问题列式为:find=12NTA=A1A2ANT=12NTminC=f(,A,)s.t.R(u)=0i c(拉索),t(桁架)Ai,0,A,A0i 0,0,i=1,2,N(1)式中:,A,分别为需要求解的单元状态、截面积和预应力向量;C为柔顺度目标函数;R和u分别为最终

10、平衡构型中的力残差向量和位移向量,对应平衡方程为R(u)=P F(P和F分别为载荷向量和内力向量);A和A分别为工艺允许的最小截面积尺寸和最大截面积尺寸,对应的单元状态则在下标以(代表t或c)标注;0为拉索单元的最大许可预应力值。2优化方法2.1预应力修正的柔顺度目标函数对于几何非线性的大变形问题,最常用的柔顺度目标函数为末端柔顺度14,即:f1=PTu(2)式中,f1为原始目标函数。它本质上是外力功的一种度量,但由于位移向量u所参考的初始构型中存在预应力索单元,因此它并不是平衡构型。这将导致以此构型作为参考构型的优化设计无法正确考虑预应力索对结构刚度的影响,因此应对这一目标函数做相应修正。因

11、为式中仅有u是设计变量的函数,因此考虑添加一个预应力修正项u0,将其修正为真实位移,即:f2=PT(u u0)(3)式中:f2为修正后的目标函数;u0是同一结构仅在预应力作用下发生的位移向量。以图1中的一个简易三单元索桁架模型为例,图中计算u的“分析2”为在外载荷和预应力作用下的非线性分析,而计算u0的“分析1”实质上是预应力的预平衡分析。但在该分析过程中,真实的起始构型在完全拉格朗日格式下是难以提前获得的,而其逆过程所对应的“分析1”显然更利于求解,其对应的平衡方程为:R0(u0)=F(4)式中,R0为“分析1”中对应于u0的残差向量。由于修正位移向量u u0对应真实的初始构型,所以修正的目

12、标函数在文中被称为真实末端柔顺度(Cr)。x00 x0 xkx0 xPPu0=x00 x分析1u0=0 x x0分析1u=kx 0 x分析2(a)仅预应力作用下的真实构型(b)0时刻的参考构型同时也是设计构型(c)载荷作用后k时刻的变形构型图 1预应力作用下的非线性系统分析流程(红色为桁架单元,蓝色为预应力拉索单元)2.2设计变量的归一化方法归一化方法是数值优化中常用的手段。在初始设计变量中,A,本就是连续变量,可以直接使用Ai,=x2iA,i,c=x3i来进行归一化处理(x2i,x3i为定义在0,1上的连续密度变量,并对x2iAA的单元执行密度过滤)。但状态变量为离散变量,本文考虑使用类似于

13、离散材料优化中的处理方式15,即建立对应的材料插值函数来实现其连续化转化。所用的刚度密度插值函数为:i(x1i)=x1it+(1 x1i)cEi(x1i)=x1iEt+(1 x1i)Ec(5)式中:i和Ei分别为密度、刚度插值函数;t和Et分别为桁架的密度和刚度;c和Ec分别为拉索的密度和刚度;x1i为0,1上的差值变量。不可避免的是,这会带来大量的无实际意义的中间密度单元,可以考虑使用罚函数或是投影法16来消除这一影响。通过归一化方法,单元的切线刚度矩22第39卷第1期朱继宏,等:大变形条件下的预应力索桁架天线结构优化设计专家论坛阵KTi、内力向量Fi和单元质量mi可以写作:|KTi(x1i

14、,x2i,x3i)=x2ix1iKTi,t+x2i(1 x1i)KTi,c+x3ix2i(1 x1i)K0i,cFi(x1i,x2i,x3i)=x2ix1iFi,t+x2i(1 x1i)Fi,c+x3ix2i(1 x1i)F0i,cmi(x1i,x2i,x3i)=x2ix1imi,t+x2i(1 x1i)mi,c x3ix2i(1 x1i)m0i,c(6)式中:KTi,t和KTi,c分别为无预应力的全尺寸桁架和拉索单元的切线刚度矩阵;Fi,t和Fi,c分别为无预应力的全尺寸桁架和拉索单元的内力向量;mi,t和mi,c分别为桁架和拉索材料的质量;K0i,c和F0i,c分别为由拉索预应力引起的几何

15、刚度矩阵和内力向量;m0i,c为使用截短法来获取预应力引起的单元质量损失,当预应力相对较小时,这一项可以忽略。至此初始优化问题被改写为:findxj=xj1xj2xjNT,j=1,2,3minCr=f(xj)=PT(u u0)s.t.R(u)=0,R0(u0)=0 xji 0,1,i=1,2,N(7)2.3预应变的格式修正方法对于索桁架问题,结构中的预应力全部由预应力索提供,但事实上索单元的预应力是由实际长度与设计长度的“不匹配”导致的。将不匹配长度记作D,当使用截短法来获取预应力时,D也就是截短长度。为了更直观地表示预应力的大小,使用设定长度为L的拉索的预应变0来代替D,即0=LL D(8)

16、由此可知,预应变是线应变而非完全拉格朗日格式下的格林应变,应当进行相应的格式修正。在不考虑预应力的作用时,拉索单元的格林应变张量的唯一非0分量k0为:k0=12(k0XTk0X 1)(9)式中,k0X为0到k时刻的变形梯度向量。在预应力作用下,上式改变为:k0=12k0XT(0+1)2k0X 1(10)将与预应变无关的项k0分离出来,就能得到格林应变格式下的预应变k00:k00=12k0XT(0+1)2 1k0X(11)根据能量共轭关系就可以获得应力张量的相关项,并进一步求解式(6)中的K0i,c和F0i,c。此外k00和k0还将被用于判断预应力拉索的单元应力状态,当k0 k00时,预应力将无法补偿拉索的压缩变形,拉索进入无法承载的塌缩态。2.4基于伴随法的灵敏度分析方法设计变量对Cr的灵敏度为:df2dx=PT(dudxdu0dx)(12)其中的位移向量与设计变量间的函数是高度非线性的,使用伴随法来实现其线性化。引入两个伴随乘子和0,将式(3)改写为:f2(x)=PT(u u0)+TR+T0R0(13)由于所有伴随项中的残差向量在其对应的平衡构型中都为 0,两个伴随乘子可以被任意选取

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2