ImageVerifierCode 换一换
格式:PPT , 页数:135 ,大小:5.64MB ,
资源ID:3489165      下载积分:14 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/3489165.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(3.Arithmetic+for+Computers.ppt)为本站会员(a****2)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

3.Arithmetic+for+Computers.ppt

1、Computer Organization&DesignThe Hardware/Software Interface,2024/2/19,1,Arithmetic for Computers,Arithmetic for Computers,Operations on integersAddition and subtractionMultiplication and divisionWhat about fractions and real numbers?Representation and operations How are overflow scenarios handled?e.

2、g.An operation creates a number bigger than can be representedHow does hardware really multiply and divide numbers?,MIPS Arithmetic Logic Unit(ALU),Must support the Arithmetic/Logic operations of the ISAadd,addi,addiu,addusub,subumult,multu,div,divu sqrtand,andi,nor,or,ori,xor,xori beq,bne,slt,slti,

3、sltiu,sltu,With special handling forsign extend addi,addiu,slti,sltiuzero extend andi,ori,xorioverflow detection add,addi,sub,Computer words are composed of bits;thus words can be represented as binary numbers.What about fractions and other real numbers?What happen if an operations creates a number

4、bigger than can be representedAnd underlying these questions is a mystery:How does hardware really multiply or divide numbers?,3.1 Introduction,2024/2/19,4,Different Representations of Natural NumbersXXVIIRoman numerals(not positional)27Radix-10 or decimal number(positional)110112Radix-2 or binary n

5、umber(also positional)Fixed-radix positional representation with k digitsNumber N in radix r=(dk1dk2.d1d0)rValue=dk1r k1+dk2r k2+d1r+d0Examples:(11011)2=124+123+022+12+1=27(2103)4=243+142+04+3=147,Positional Number Systems,Binary Numbers,Each binary digit(called bit)is either 1 or 0Bits have no inhe

6、rent(固有的)meaning,can representUnsigned and signed integersCharactersFloating-point numbersImages,sound,etc.Bit NumberingLeast significant bit(LSB)is rightmost(bit 0)Most significant bit(MSB)is leftmost(bit 7 in an 8-bit number),Converting Binary to Decimal,Each bit represents a power of 2Every binar

7、y number is a sum of powers of 2Decimal Value=(dn-1 2n-1)+.+(d1 21)+(d0 20)Binary(10011101)2=27+24+23+22+1=157,Convert Unsigned Decimal to Binary,Repeatedly divide the decimal integer by 2Each remainder is a binary digit in the translated value,37=(100101)2,Hexadecimal Integers,16 Hexadecimal Digits

8、:0 9,A FMore convenient to use than binary numbers,Binary,Decimal,and Hexadecimal Equivalents,Converting Binary to Hexadecimal,Each hexadecimal digit corresponds to 4 binary bitsExample:Convert the 32-bit binary number to hexadecimal1110 1011 0001 0110 1010 0111 1001 0100Solution:,0100,4,1001,9,0111

9、,7,1010,A,0110,6,0001,1,1011,B,1110,E,Multiply each digit by its corresponding power of 16Value=(dn-1 16n-1)+(dn-2 16n-2)+.+(d1 16)+d0Examples:(1234)16=(1 163)+(2 162)+(3 16)+4=Decimal Value 4660(3BA4)16=(3 163)+(11 162)+(10 16)+4=Decimal Value 15268,Converting Hexadecimal to Decimal,Converting Deci

10、mal to Hexadecimal,Decimal 422=1A6 hexadecimal,Repeatedly divide the decimal integer by 16Each remainder is a hex digit in the translated value,Integer Storage Sizes,What is the largest 20-bit unsigned integer?Answer:220 1=1,048,575,Storage Sizes,Binary Addition,Start with the least significant bit(

11、rightmost bit)Add each pair of bitsInclude the carry in the addition,if present,(54),(29),(83),1,1,1,0,1,0,1,0,0,1,1,Hexadecimal Addition,Start with the least significant hexadecimal digitsLet Sum=summation of two hex digitsIf Sum is greater than or equal to 16Sum=Sum 16 and Carry=1Example:,A,F,C,D,

12、B,A+B=10+11=21Since 21 16Sum=21 16=5Carry=1,Signed Integers,Several ways to represent a signed numberSign-MagnitudeBiased1s complement2s complementDivide the range of values into 2 equal partsFirst part corresponds to the positive numbers(0)Second part correspond to the negative numbers(0)Focus will

13、 be on the 2s complement representationHas many advantages over other representationsUsed widely in processors to represent signed integers,Twos Complement Representation,Positive numbersSigned value=Unsigned valueNegative numbersSigned value=Unsigned value 2nn=number of bitsNegative weight for MSBA

14、nother way to obtain the signed value is to assign a negative weight to most-significant bit=-128+32+16+4=-76,Forming the Twos Complement,Sum of an integer and its 2s complement must be zero:00100100+11011100=00000000(8-bit sum)Ignore Carry,Another way to obtain the 2s complement:Start at the least

15、significant 1Leave all the 0s to its right unchangedComplement all the bits to its left,Binary Value=00100 1 002s Complement=11011 1 00,Sign Bit,Highest bit indicates the sign1=negative0=positive,For Hexadecimal Numbers,check most significant digitIf highest digit is 7,then value is negativeExamples

16、:8A and C5 are negative bytesB1C42A00 is a negative word(32-bit signed integer),Sign Extension,Step 1:Move the number into the lower-significant bitsStep 2:Fill all the remaining higher bits with the sign bitThis will ensure that both magnitude and sign are correctExamplesSign-Extend 10110011 to 16

17、bitsSign-Extend 01100010 to 16 bitsInfinite 0s can be added to the left of a positive numberInfinite 1s can be added to the left of a negative number,Twos Complement of a Hexadecimal,To form the twos complement of a hexadecimalSubtract each hexadecimal digit from 15Add 1Examples:2s complement of 6A3

18、D=95C2+1=95C32s complement of 92F15AC0=6D0EA53F+1=6D0EA5402s complement of FFFFFFFF=00000000+1=00000001No need to convert hexadecimal to binary,Binary Subtraction,When subtracting A B,convert B to its 2s complementAdd A to(B)0 1 0 0 1 1 0 10 1 0 0 1 1 0 1 0 0 1 1 1 0 1 01 1 0 0 0 1 1 0(2s complement

19、)0 0 0 1 0 0 1 10 0 0 1 0 0 1 1(same result)Final carry is ignored,becauseNegative number is sign-extended with 1sYou can imagine infinite 1s to the left of a negative numberAdding the carry to the extended 1s produces extended zeros,+,borrow:,carry:,1,1,1,1,1,1,1,Hexadecimal Subtraction,When a borr

20、ow is required from the digit to the left,thenAdd 16(decimal)to the current digits valueLast Carry is ignored,Borrow:,-,E,2,4,2,1,B,D,2,1,1,1,E,B,D,(same result),Ranges of Signed Integers,For n-bit signed integers:Range is-2n1 to(2n1 1)Positive range:0 to 2n1 1Negative range:-2n1 to-1,Practice:What

21、is the range of signed values that may be stored in 20 bits?,3.2 Addition&subtraction,Adding bit by bit,carries-next digitSubtractionDirectlyAddition of 2s complement,2024/2/19,25,Overflow,The sum of two numbers can exceed any representationThe difference of two numbers can exceed any representation

22、2s complement:Numbers changesign and size,2024/2/19,26,Overflow,General overflow conditions,2024/2/19,27,Carry and Overflow Examples,We can have carry without overflow and vice-versaFour cases are possible(Examples are 8-bit numbers),Carry and Overflow,Carry is important when Adding or subtracting u

23、nsigned integersIndicates that the unsigned sum is out of rangeEither maximum unsigned n-bit valueOverflow is important when Adding or subtracting signed integersIndicates that the signed sum is out of rangeOverflow occurs whenAdding two positive numbers and the sum is negativeAdding two negative nu

24、mbers and the sum is positiveCan happen because of the fixed number of sum bits,Unsigned Integers:n-bit representationSigned Integers:n-bit 2s complement representation,Range,Carry,Borrow,and Overflow,max=2n1,min=0,max=2n-11,min=-2n-1,Overflow,Reaction on overflowIgnore?Reaction of the OSSignalling

25、to application(Ada,Fortran,.)Hardware detection in the ALUGeneration of an exception(interrupt)Save the instruction address(not PC)in special register EPCJump to specific routine in OSCorrect&return to programReturn to program with error codeAbort program,2024/2/19,31,Overflow,Overflows in signed ar

26、ithmetic instructions cause exceptions:addadd immediatesubtractOverflows in unsigned arithmetic instructions dont cause exceptions:add unsignedadd immediate unsignedSubtract unsignedHandle with care!,2024/2/19,32,Constructing an ALU,Step by step:build a single bit ALU and expand it to the desired widthFirst function:logic AND and OR,2024/2/19,33,A half adder,Sum=a b+a bCarry=a b,2024/2/19,34,A full adder,Accepts a carry inSum=A xor B xor CarryInCarryOut=B CarryIn+A CarryIn+A B,2024/2/19,35,Full adder,Full adder in 2-level design,2024/2/19,36,1 bit ALU,ALUANDORADDCascade Element,2024/2/19,37,

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2