1、助力乡村学校音体美课堂行动”官方合作图书金接睛代研客及全国各大考研培训学校指定用书GLST明德弘段品质榜时代考研数学列概率论与数理统计辅导讲义学霸养成笔记与高分提档严选题2022(ID:diky66主编王式安(北京理工大学)讲义配套练习题目严扣知识点重点题型详细解析检验自身学习水平可衍生各类型试题通透易懂金榜时代考研数学名师团队线代王李永乐清华李永乐考研数学辅导团队微信公众号:永乐讲线代茵B站:李永乐考研团队原清华大学应用数学系教授北京高教学会数学研究会副理事长广受学生信赖的“线代王”曾任全国硕士研究生入学考试北京地区数学阅卷组组长百万畅销书线性代数辅导讲义数学复习全书主编李老师作为全国著名的
2、考研数学线性代数辅导专家,对考研数学出题形式、考试重点了如指掌,解题思路极其灵活,辅导针对性极强,效果优良,成绩显著,受到广大学员的交口称赞。其主编的线性代数辅导讲义数学复习全书数学基础过关660题等已被历届考生公认为复习首选辅导书。前命题组组长王式安今清华李水乐考研数学辅导团队茵B站:李永乐考研团队原北京理工大学研究生院院长、应用数学系主任、教授享受国务院特殊津贴的数学专家美国哥伦比亚大学、南佛罗里达大学、纽约大学等大学的客座教授1987-2001年间担任全国硕士研究生入学考试数学命题组组长百万畅销书概慨率论与数理统计辅导讲义数学复习全书主编王老师凭借多年参加考研数学命题工作的深厚经验,对考
3、研数学的命题思路和命题方向了如指掌。其主编的概率论与数理统计辅导讲义数学复习全书数学基础过关660题等已被历届考生公认为复习首选辅导书。考研高数“三巨头”一刘喜波(高数波叔)清华李永乐考研数学辅导团队中国科学院数学博士北方工业大学理学院统计学系系主任、教授长期从事本科生的教育教学工作,曾荣获学校师德先进个人、十佳班导师等称号,是北京市中青年骨干教师、北京市公共数学优秀教学团队主要成员,主编教材1部、教学参考书3部、教育教学论文集1部、译著2部,参编教学参考书10余部。武忠祥清华李永乐考研数学辅导团队原西安交通大学(985、211、双一流高校)数学系教授美国爱荷华大学(2019美国综合性大学T0
4、P100)访问学者百万畅销书高等数学辅导讲义数学复习全书主编高教社工科数学分析基础高等数学基础等教材主编考研高数“三巨头”宋浩(考研数学阅卷人)宋浩老师的B站:宋浩老师官方山东大学数学院本科研究生、中国科学院博士英国Queen Mary University of London访问学者副教授,考研数学阅卷人宋老师上课风趣幽默、由浅入深,能把复杂抽象的数学讲得诙谐有趣,上传至B站的数学视频线性代数微积分概率论与数理统计高等数学帮助了全国无数的大学生,总播放量近2000万次。宋老师讲考研数学,延续其风趣幽默的特点,喜欢从多种角度找寻思路,善于总结知识点,把晦涩难懂的考研知识讲的生动而有趣。考研高数
5、“三巨头”姜晓干(全能名师】晓千老师微信公众号:晓千老师中国人民大学金融数学博士全国各大省市考研辅导机构全程主讲新浪、搜孤、腾讯、网易、中国教育在线等各大门户网站特邀访谈嘉宾姜老师对考研数学历年真题有着极其深入的研究,授课风格高屋建瓴、激情洋溢、亲和幽默,深受考研学子喜爱。第一章随忆事件和率1.选择题(1)对任意两个互不相容的事件A与B,必有(A)如果P(A)=0,则P(B)=0.(B)如果P(A)=0,则P(B)=1.(C)如果P(A)=1,则P(B)=0.(D)如果P(A)=1,则P(B)=1.(2)设两两独立且概率相等的三事件A,B,C满足条件P(AUBUC)=,且ABC=9,则P(A)
6、的值必为A是(B)3(D)3(3)设事件A与事件B互不相容,则(A)P(AB)=0.(B)P(AB)=P(A)P(B)(C)P(A)=1-P(B)(D)P不UB)=1,微信公众号:顶尖考研(4)设事件A和B满足P(B|A)=1,则(A)B=2.(B)A C B.(ID:djky66)(C)P(B|A)=0.(D)P(A-B)A)=0.(5)已知随机事件A,B,C中,满足P(AB)=1,则事件A,B,C(A)相互独立.(B)两两独立,但不一定相互独立。(C)不一定两两独立(D)一定不两两独立(6)设A,B为随机事件,且P(B)0,P(A|B)=1,则必有(A)P(A U B)P(A).(B)P(
7、A U B)P(B).(C)P(A U B)=P(A).(D)P(A U B)=P(B).(7)设A,B,C为三个随机事件,且A与C相互独立,B与C相互独立,则AB与C相互独立的充分必要条件是(A)A与B相互独立(B)A与B互不相容(C)AUB与C相互独立.(D)AUB与C互不相容.2.填空题(1)设A,B,C是两两相互独立且三事件不能同时发生的随机事件.已知P(A)=P(B)=P(C)=x,则使P(AUBUC)取最大值的x=1学霸养成笔记与高分提档严选题(2)设对事件A,B,C有P(A)=P(B)=P(C)=,P(AB)=P(BC)=0,P(AC)=名,则A,BC三个事件中至少出现-个的概率
8、为(3)设P(A)=P(B)=3,且P(B1A)+P(B1A)=1,则P(AB)(4)为从2个次品8个正品的产品中将2个次品挑出,随机从中逐个测试,则不超过4次测试就把2个次品挑出的概率为3.解答题(1)5双不同的鞋,从中任取4只,试求下列事件的概率:(I)没有2只鞋能配成一双;()恰有2只鞋能配成一双;()能配成2双.(2)在A,B,C三随机事件中,已知P(AUB)=0,证明A,B,C必相互独立。(3)从数1,2,3,4中任取一数,记为X,再从1,X中任取一个数,记为Y,试求Y为偶数的概率.(4)在一张划有等距间隔横线的纸上,投一枚直径为2m的硬币.已知硬币不与横线相交的概率为0.5,求横线间距.(5)在伯努利试验中,每次试验成功的概率为p,试求下列事件的概率:(I)在第4次试验之前恰失败了2次;()在第4次成功之前恰失败了2次.。2第一章随机事件和概率一、学霸小结自己总结本章所学的知识、方法与技巧,形成结构,既可巩固所学知识,又可培养独立思考分析问题的能力,养成学以致用的良好习惯。1.2.微信公众号:顶尖考研微信公众号【顶尖D:djky66)(ID:dikv663.4.。3心