ImageVerifierCode 换一换
格式:PDF , 页数:63 ,大小:501.67KB ,
资源ID:75224      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/75224.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(复旦大学《大学物理》课件(英文)-第9章Rotational dynamics(1).pdf)为本站会员(嘭**)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

复旦大学《大学物理》课件(英文)-第9章Rotational dynamics(1).pdf

1、Chapter 9 Rotational dynamics9-1 Torque1.TorqueIn this chapter we will consider only case in which the rotational axis is fixed in z direction.Fig 9-2 shows an arbitrary rigid body that is free to rotate about the z axis.PzOMFrdM*A force is applied at point P,which is located a perpendicular distanc

2、e r from the axis of rotation.and lie in x-y plane,and make an angle .FFrThe radial componenthas no effect on rotation of the body about z axis.Only the tangential componentproduces a rotation about the z axis.cosFFR=sinFF=The angular acceleration also depends on the magnitude of rThe rotational qua

3、ntity “torque”is defined as(9-1)The unit of torque is the Newton-meter ()sinrF=mNIf r=0-that is the force is applied at or through the axis of rotation;If or ,that is the force is applied in the radial direction;If =0.1800=When =0?sinrF=F2.Torque as a vectorIn terms of the cross product,the torque i

4、s expressed as (9-3)=FrsinrF=Magnitude of :Direction of :using righ-hand rulesinrFPzOMFrdM*+=kyFxFjxFzFizFyFFFFzyxkjiFrxyzxyzzyx)()()(+=kzjyixr+=kFjFiFFzyxComponents of torque:SoSample problem 9-1Fig 9-5 shows a pendulum.The magnitude of the torque due to gravity about the point o is it has the oppo

5、site direction.Fig 9-5sinLmg=mgmgx.9-2 Rotational inertia and Newtons second law1.Rotational inertia of a single particleFig 9-7 shows a single particle of mass m which is attached by a thin rod of length r and of negligible mass,and free rotates about the z axis.oxyrmsinFFFig 9-7A force is applied

6、to the particle in a direction at an angle with the rod(in x-y plane).Newtons Second law applied the tangential motion of the particle gives and ,we obtainFsinFmaFtt=rmFz=sinrazt=rmsinFz=rrzzmr2=amF2mrII=,zzWe define to be the“rotational inertia”Iof the particle about point o.(9-6)The rotational ine

7、rtia depends on the mass of the particle and on the perpendicular distance between the particle and the axis of rotation.2mrI=2mr2.Newtons second law for rotation Fig 9-82m1m0 xyt 1F1FRF12FRF2t 2F(For system of particles)2m1mPrT1rT21T2T1rxy02rThat is(9-7)For each particle Substituting them into Eq(9

8、-7),we obtain221121)()(rFrFttzzz+=+=ttamF111=ttamF222=222211zz222211z222z21122t211t122t11tzrmrmII)rmr(mrmrmramram)rF()rF(+=+=+=+=+=,(9-8)The are the same for both particles,the total rotational inertia of this two-particle system:(9-9)The obvious extension to a rigid object consisting of N particles

9、 rotating about the same axis is(9-10)z222211rmrmI+=22222211nnNNrmrmrmrmI=+=Torque of Internal Forces:2211frfrM+=In21ff=112121frf)rr(M=In=01f2f1r2r12rTorque of Internal Forces is zero!For system of particles,what kinds of forceinduce torque?2m1mPrT1rT21T2T1rxy02rFig.9-8Tensions and have also no torq

10、ue about o.1T2TThus the torque about o is due only to the external force .Thus we can rewrite the Eq(9-8)as(9-11)This is the rotational form of Newtons Second law.zzextI=,PNotes:,I,must be calculated about same axis.For rotations about a single axis,I is scalar.If many external forces act on the sys

11、tem,we add up the torques due to all the external forces about that same axis.zext,zSample problem 9-2Three particles of masses =2.3kg,=3.2kg and =1.5kg are connected by thin rods of negligible mass,so that they lie at the vertices of 3-4-5 right triangle in the x-y plane.Fig 9-9341m2m3mX(m)y(m)c1r2

12、r3rF=4.5N302m3m1mQuestion:(a)Find the rotational inertia about each of the three axes perpendicular to the x-y plane and passing through one of the particles.(b)A force of magnitude 4.5N is applied to m2in the xy plane and makes an angles of 300with the horizontal.Find the angular acceleration about

13、 oz axis.(c)Find the rotational inertial about an axis perpendicular to the xy plane and passing through the center of mass of the systemSolution:(a)consider first axis through Similarly for the axis through ,we have For the axis through 22222153)4()5.1()0.3()2.3()0()3.2(mkgmkgmkgmkgrmInn=+=2222258)

14、0.5()5.1()0()2.3()0.3()3.2(mkgmkgmkgmkgI=+=23117mkgI=1m2m3m341m2m3mX(m)y(m)c1r2r3rF=4.5N30(b)Using Eq(9-2)(c)Rotational inertial about an axis passing through the cm.(3)(4.5)cos30zrFmN=21(3)(4.5)cos3053zzmNIkg m=mmymynnncm37.1=mmxmxnnncm86.0=2222162.2myxrcmcm=+=22222240.3)(myyxrcmcm=+=22232374.11)(m

15、yxxrcmcm=+=2222235)74.11()5.1()40.3()2.3()62.2()3.2(mkgmkgmkgmkgrmInncm=+=IcmI1,I2,I33.The parallel-axis theoremThe result of the previous sample problem leads us to an important general result,the parallel-axis theorem:“The rotational inertia of any body about an arbitrary axis equals the rotationa

16、l inertial about a parallel axis through the center of mass plus the total mass timesthe squared distance between two axes”.2MhIIcm+=4.Proof of Parallel-Axis theoremFig 9-10 shows a thin slab in the x-y plane,the rotational inertia about oz is Fig 9-10oxXhcyycmxcmyPncmnxxx+=ncmnyyy+=)(222nnnnnyxmrmI+=Substituting these transformations,we have Regrouping the terms,we can write this as)()(22ncmncmnyyxxmI+=+=ncmcmnncmnncmnnnmyxymyxmxyxmI)(22)(22222cmIMh=+0=cmnnMxxm0=cmnnMyym9-3 Rotational inertia o

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2