ImageVerifierCode 换一换
格式:PDF , 页数:26 ,大小:1.76MB ,
资源ID:75288      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/75288.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(复旦大学《大学物理》课件(英文)-第4章 Motion in two and three(1).pdf)为本站会员(嘭**)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

复旦大学《大学物理》课件(英文)-第4章 Motion in two and three(1).pdf

1、Chapter 4Motion in two and three dimensionsTwo principlesfor 2D and 3D motions:1)The principle of independence of force2)The principle of superposition of motionF1F2F3The particle starts at t=0 with initial positionand an initial velocity .Section 4-1 Motion in three dimensions with constant acceler

2、ationNow we consider a particle move in three dimensions with constant acceleration.We can represent the acceleration as a vector:+=kajaiaazyx+=kzjyixro000+=kvjvivvzyx0000In a similar way:tavvxxx+=0tavvyyy+=0tavvzzz+=0tavv+=0a constant,a,xyza a aall constants tavxxxtx20021+=tavzzztz20021+=tavyyyty20

3、021+=20021tatvrr+=(4-1)(4-2)Section 4-2 Newtons laws in three dimensional vector form(4-3)Which includes the three component equations (4-4)=amFxxmaF=yymaF=zzmaF=Sample problem1.A crate of mass m=62 kg is sliding without friction with an initial velocity of v0=6.4 m/salong the floor.In an attempt to

4、 move it in a different direction,Tom pushes opposite to its initial motion with a constant force of a magnitude F1=81N,while Jane pushes in a perpendicular direction with a constant force of magnitude F2=105N.If they each push for 3.0s,in what direction is the crate moving when they stop pushing?Se

5、ction 4-3 Projectile motionFigure 4-4 shows the initial motion of a projectile at the instant of launch.Its initial velocity is ,directed at an angle from the horizontal.ov000=x00=yovyx0Fig 4-4 A particle is launched with initial velocity mgWe choose suitable coordinate system to make:oThe component

6、s of the initial velocity are (4-6)Gravity is the only force acting on the particle,so the components of the net force are(4-7)(4-8)(4-9)Position components:(4-10)00cosvvox=00sinvvoy=0=xFmgFy=0=xagay=xxvv0=gtvvyy=0tvxx0=2021gttvyy=From Eqs.(4-10),we can eliminate t and obtain the relationship betwee

7、n x and y(after considering Eqs.(4-6):22000)cos(2tanxvgxy=(4-13)which is the equation of a trajectory(轨线)of the projectile,the equation of a parabola.Hence the trajectory of a projectile is parabolic.Fig 4-5 trajectory of a projectilevx0vy0vx0vyR0vvx0vx0vx0vy0 xyoThe“horizontal range R”of the projec

8、tile is defined as the distance along the horizontal where the projectile return to the level from which it was launched.Let y=0 in Eq(4-13),we obtain the range R:(4-14)02000202sincossin2gvgvR=当子弹从枪口射出时,椰子刚好从树上由静止当子弹从枪口射出时,椰子刚好从树上由静止自由下落自由下落.试说明为什么子弹总可以射中椰子试说明为什么子弹总可以射中椰子?Sample problem4-3.In a cont

9、est to drop a package on a target,one contestants plane is flying at a constant horizontal velocity of 155km/h at an elevation(海拔)of 225m toward a point directly above the target.At what angle of sight should the package be released to strike the target?Section 4-4 Drag forces and the effects on mot

10、ionsDrag force is a frictional force whichexperienced by any object that moves through a fluid medium,such as air or water.Drag force must be taken into account in the design of aircraft and seacraft.Drag forces prevent the velocity from increasing without limit in the nature.Falling motion with dra

11、g forceWe assume that the magnitude of the drag forceD depends linearly on the speed:(4-17)vbD=We choose the y axis to be vertical and the positive direction to be downward.yybvmgF=yymabvmg=yyyvmbgadtdv=(4-18)(4-19)dtmbvgdvyy=(4-20)andWith at time t=0,we integrate two sides of Eq.(4-20)then we obtai

12、n(4-21)(4-22)0=yv=tvyydtmbvgdvy00()ymgbvblntmgm=)1(tmbyebmgv=0tmbe For large t,bmgvyThe magnitude of the terminal speed approaches a constant value,not increasing without limit.For small t,1tmbtmbetmb1Sogttmbbmgtvy=)1(1)(small t)(4-23)At the beginning of the motion,it is nearly a freely falling moti

13、on.mgmgmgDDHow is D changing with time in general?It is found that a cat is much safer when it falls from higher place.WHY?mgD(for cats)Projectile motion with drag forceX(m)Y(m)Without drag forceWith drag force060060=-79vbD=When the drag forceis considered,the range R and the maximum height H will b

14、e reduced.RoThe trajectory is also no longer symmetric about the maximum;the descending motion is much steeper than the ascending motion.4-5 Uniform Circular MotionIn uniform circular motion,the particle moves at constant speed in a circular path.Since the direction of velocity changes in the motion

15、,it is an acceleration motion.How to find acceleration from the constant speed for uniform circular motion?Fig 4-16OvrFig 4-16Ov1p2pvyFind acceleration for the motionxyv1xv1xv2yv2cos1vvx=sin1vvy=cos2vvx=sin2vvy=(4-25)As the particle moves along the arc from to ,it covers a distance of ,and a time in

16、terval .1p2p2 rvrt2=Acceleration:012=tvvaxxx(4-27)sin)/2(sinsin212rvvrvvtvvayyy=(4-28)rpIn order to find the instantaneous acceleration,we take approaches zero,(then angle goes to zero)so that and both approach p,which gives1p2ptrvrvrvay20220sinlim)sin(lim=(4-29)The minus sign indicating that the acceleration at p points toward the center of the circle.Point p is an arbitrary point on the circle,so Eq.(4-29)is a general result for the motion.The acceleration is called centripetal accelerationor

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2