ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:221.98KB ,
资源ID:854441      下载积分:8 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/854441.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2023年g31028数列的综合应用doc高中数学.docx)为本站会员(la****1)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

2023年g31028数列的综合应用doc高中数学.docx

1、g3.1028数列的综合应用一、知识回忆1. 数列的概念,等差、等比数列的根本概念;2. 等差、等比数列的通项、前n项和公式;3. 等差、等比数列的重要性质;4. 与数列知识相关的应用题;5. 数列与函数等相联系的综合问题。二、根本训练1. 数列中, ,那么 。 2. 等差数列中,公差不为零,且恰为某等比数列的前3项,那么该等比数列的公比等于 。3. 是等差数列的前n项和,假设,那么m = 。4. 设是等比数列,是等差数列,且,数列的前三项依次是,且,那么数列的前10项和为 。5. 如果函数满足:对于任意的实数,都有,且,那么。三、例题分析例1设无穷等差数列的前n项和为.(1)假设首项,公差,

2、求满足的正整数k;(2)求所有的无穷等差数列,使得对于一切正整数k都有成立.例2 如图,64个正数排成8行8列方阵符号表示位于第i行第j列的正数每一行的数成等差数列,每一列的数成等比数列,且各列数的公比都等于假设,(1)求的通项公式;(2)记第行各项和为,求的值及数列的通项公式;(3)假设,求的值。例3 函数对任意都有(1)求和的值(2)数列满足:=,数列是等差数列吗? (3)令,试比较与的大小例4. (05福建卷)数列an满足a1=a, an+1=1+我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:()求当a为何值时a4=0;()设数列bn满足b1=1, bn+1=,求

3、证a取数列bn中的任一个数,都可以得到一个有穷数列an;()假设,求a的取值范围.四、作业 g3.1028数列的综合应用1. 等差数列的前n项和为,假设的值为常数,那么以下各数中也是常数的是( ) A. B. C. D.2. 等差数列和等比数列各项都是正数,且,那么,一定有( )A. C.1. (05广东卷)数列满足,假设,那么 x1等于 (B)()()()()3. 等差数列所有项的和为210,其中前4项的和为40,后4项的和为80,那么项数为 。4. 定义“等和数列:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。 数列是等和数列,

4、且,公和为5,那么的值为_,这个数列的前n项和的计算公式为 。5. 三个实数排成一行,在6和3之间插入两个实数,3和之间插入一个实数,使得这六个数中的前三个、后三个分别成等差数列,且插入的三个数本身依次成等比数列,那么所插入的这三个数的和可能是:;3;7。其中正确的序号是 。6. 用数字0, 1, 2, 3, 5组成没有重复数字的五位偶数,把这些偶数从小到大排列起来,得到一个数列,那么 。7. 等差数列的公差,数列是等比数列,又。(1)求数列及的通项公式;(2)设,求数列的前n项和(写成关于n的表达式)。8. 设有数列,假设以为系数的一元二次方程,且都有根满足。(1)求证:数列是等比数列;(2)求;(3)求的前n项和。9. 定义在R上的函数和数列满足以下条件: , 其中为常数,为非零常数。(1)令,证明数列是等比数列;(2)求数列的通项公式。答案:根本训练1、202、43、104、9785、例题分析:例1、(1)4 (2)或或例2、(1)(2)(3)6,7,8例3、(1),(2)为等差数列(3)当时,;当时,例4.(I)解法一: 故a取数列bn中的任一个数,都可以得到一个有穷数列an作业:1、C2、B3、B 4、145、6、,7、321508、(1)(2)9、(1)略(2)(3)10、(1)略(2)

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2