ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:109.56KB ,
资源ID:89558      下载积分:12 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wnwk.com/docdown/89558.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《线性代数》常见证明题型及常用思路.doc)为本站会员(g****t)主动上传,蜗牛文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知蜗牛文库(发送邮件至admin@wnwk.com或直接QQ联系客服),我们立即给予删除!

《线性代数》常见证明题型及常用思路.doc

1、线性代数常见证明题型及常用思路二、证明题题型1关于线性相关性的证明中常用的结论(1)设,然后根据题设条件,通过解方程组或其他手段:如果能证明必全为零,则线性无关;如果能得到不全为零的使得等式成立,则线性相关。(2)线性相关当且仅当其中之一可用其他向量线性表示。(3)如果,则可通过矩阵的秩等方面的结论证明。(4)如果我们有两个线性无关组,且是同一个线性空间的两个子空间,要证线性无关。这种情况下,有些时候我们设。根据题设条件往往能得到,进而由的线性无关得到系数全为零。题型2. 关于欧氏空间常用结论(1)内积的定义(2)单位正交基的定义(3)设是单位正交基,。则5题型3. 关于矩阵的秩的证明中常用的

2、结论(1)初等变换不改变矩阵的秩(2)乘可逆矩阵不改变矩阵的秩(3)阶梯形的秩(4)几个公式(最好知道如何证明):常用来证明关于秩的不等式(5)利用分块矩阵的初等变化不改变矩阵的秩(常用来证明关于秩的不等式)例:证明:。证:上面第二个等号是用左乘第一个分块矩阵的第一行,然后加到第二行所得;第三个等号是用又乘第二个分块矩阵的第一列,然后加到第二列所得。(6)利用齐次线性方程组解的结构(),此方法也可以用来证明关于向量组的秩方面的的问题。(7)利用向量组的秩与维数 主要是两个结论:(i)矩阵的秩=列秩=行秩 (ii)的定义域 的维数(8)利用行列式秩(9)利用相抵标准形题型4. 关于可逆矩阵常用结

3、论(1)结论:可逆有唯一解。(2)结论:可逆可逆。(3)结论:可逆当且仅当可以写为初等矩阵的乘积。(4)结论:可逆当且仅当0不是它的特征值。题型5. 关于矩阵对角化的常用结论(1)结论: 相似于。(2)结论:任一个复数域上的方阵都相似于一个若当形矩阵。(3)特征值与特征向量的定义(4)结论:是的特征值。(5)结论:属于不同特征值的特征向量线性无关。(6)结论:特征多项式的常数项就是它的行列式,它的第n-1次项的系数就是对角线上元素之和。(7)结论:。(8)结论:课本P242定理7.8。(9)结论:课本P242推论。(10)结论:课本P243定理7.10。(11)结论:实对称矩阵一定可以通过正交矩阵对角化。题型6. 关于二次型的常用结论:(1)定义:二次型的矩阵。(2)定义:相合关系。(3)实对称矩阵的相似标准形、相合标准形与相合规范形的区别。(4)定义:课本P263定义7.12与P269定义7.12(5)实对称矩阵的正、负惯性指数与特征值的关系。(6)结论:课本P264定理7.17、7.18、7.19(7)结论:课本P269定义下面的内容重要建议:最好把课本第七章内容全部记住!

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2