收藏 分享(赏)

2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc

上传人:la****1 文档编号:12667 上传时间:2023-01-06 格式:DOC 页数:17 大小:1.51MB
下载 相关 举报
2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc_第1页
第1页 / 共17页
2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc_第2页
第2页 / 共17页
2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc_第3页
第3页 / 共17页
2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc_第4页
第4页 / 共17页
2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc_第5页
第5页 / 共17页
2023学年浙江温州市高三第二次诊断性检测数学试卷(含解析).doc_第6页
第6页 / 共17页
亲,该文档总共17页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数,其中为虚数单位,则下列结论正确的是( )A的虚部为BC的共轭复数为D为纯虚数2已知实数满足线性约束条件,则的取值范围为( )A(-2,-1B(-1,4C-2,4)D0,43我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴

2、赫猜想的内容是:每个大于2的偶数都可以表示为两个素数的和,例如:,那么在不超过18的素数中随机选取两个不同的数,其和等于16的概率为( )ABCD4在菱形中,分别为,的中点,则( )ABC5D5已知公差不为0的等差数列的前项的和为,且成等比数列,则( )A56B72C88D406已知向量,则与的夹角为( )ABCD7如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A2BC6D88函数(其中是自然对数的底数)的大致图像为( )ABCD9已知集合,则的子集共有( )A个B个C个D个10已知集合,,则ABCD11已知定义在上的偶函数满足,且在区间上是减函数

3、,令,则的大小关系为( )ABCD12已知等差数列的前13项和为52,则( )A256B-256C32D-32二、填空题:本题共4小题,每小题5分,共20分。13设函数,则满足的的取值范围为_.14已知实数满足(为虚数单位),则的值为_.15已知复数,且满足(其中为虚数单位),则_.16若满足约束条件,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知分别是椭圆的左、右焦点,直线与交于两点,且(1)求的方程;(2)已知点是上的任意一点,不经过原点的直线与交于两点,直线的斜率都存在,且,求的值18(12分)在直角坐标系中,直线的参数方程为.(为参数).

4、以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程及的直角坐标方程;(2)求曲线上的点到距离的取值范围.19(12分)在中,、分别是角、的对边,且.(1)求角的值;(2)若,且为锐角三角形,求的取值范围.20(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.21(12分)在平面直角坐标系xOy中,曲线C1的参数方程为 (为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围22(10分)已知,

5、证明:(1);(2).2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】将复数整理为的形式,分别判断四个选项即可得到结果.【题目详解】的虚部为,错误;,错误;,错误;,为纯虚数,正确本题正确选项:【答案点睛】本题考查复数的模长、实部与虚部、共轭复数、复数的分类的知识,属于基础题.2、B【答案解析】作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值【题目详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,过与直线平行的直线斜率为1,故选:B【答案点睛】

6、本题考查简单的非线性规划解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论3、B【答案解析】先求出从不超过18的素数中随机选取两个不同的数的所有可能结果,然后再求出其和等于16的结果,根据等可能事件的概率公式可求.【题目详解】解:不超过18的素数有2,3,5,7,11,13,17共7个,从中随机选取两个不同的数共有,其和等于16的结果,共2种等可能的结果,故概率.故选:B.【答案点睛】古典概型要求能够列举出所有事件和发生事件的个数,本题不可以列举出所有事件但可以用分步计数得到,属于基础题.4、B【答案解析】据题意以菱形对角线交点为坐标原点建立平面直

7、角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【题目详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.故选:B.【答案点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.5、B【答案解析】,将代入,求得公差d,再利用等差数列的前n项和公式计算即可.【题目详解】由已知,故,解得或(舍),故,.故选:B.【答案点睛】本题考查等差数列的前n项和公式,考查等差数列基本量的计算,是一道容易题.6、B【答案解析】由已知向量的坐标,利用平面向量的夹角公式,直接可求出

8、结果.【题目详解】解:由题意得,设与的夹角为,由于向量夹角范围为:,.故选:B.【答案点睛】本题考查利用平面向量的数量积求两向量的夹角,注意向量夹角的范围.7、A【答案解析】先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【题目详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【答案点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.8、D【答案解析】 由题意得,函数点定义域为且,所以定义域关于原点对称, 且,所以函数为奇函数,

9、图象关于原点对称, 故选D.9、B【答案解析】根据集合中的元素,可得集合,然后根据交集的概念,可得,最后根据子集的概念,利用计算,可得结果.【题目详解】由题可知:,当时,当时,当时,当时,所以集合则所以的子集共有故选:B【答案点睛】本题考查集合的运算以及集合子集个数的计算,当集合中有元素时,集合子集的个数为,真子集个数为,非空子集为,非空真子集为,属基础题.10、D【答案解析】因为,所以,故选D11、C【答案解析】可设,根据在上为偶函数及便可得到:,可设,且,根据在上是减函数便可得出,从而得出在上单调递增,再根据对数的运算得到、的大小关系,从而得到的大小关系.【题目详解】解:因为,即,又,设,

10、根据条件,;若,且,则:;在上是减函数;在上是增函数;所以,故选:C【答案点睛】考查偶函数的定义,减函数及增函数的定义,根据单调性定义判断一个函数单调性的方法和过程:设,通过条件比较与,函数的单调性的应用,属于中档题.12、A【答案解析】利用等差数列的求和公式及等差数列的性质可以求得结果.【题目详解】由,得.选A.【答案点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】当时,函数单调递增,当时,函数为常数,故需满足,且,解得答案.【题目详解】,当时,函数单调递增,当时,函数为常数,需满足,

11、且,解得.故答案为:.【答案点睛】本题考查了根据函数单调性解不等式,意在考查学生对于函数性质的灵活运用.14、【答案解析】由虚数单位的性质结合复数相等的条件列式求得,的值,则答案可求【题目详解】解:由,所以,得,故答案为:【答案点睛】本题考查复数代数形式的乘除运算,考查虚数单位的性质,属于基础题15、【答案解析】计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【题目详解】,所以,所以.故答案为:-8【答案点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.16、4【答案解析】作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.三、

12、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】(1)不妨设,计算得到,根据面积得到,计算得到答案.(2)设,联立方程利用韦达定理得到,代入化简计算得到答案.【题目详解】(1)由题意不妨设,则,又,故的方程为(2)设,则,设直线的方程为,联立整理得在上,上式可化为,【答案点睛】本题考查了椭圆方程,定值问题,意在考查学生的计算能力和综合应用能力.18、(1),.(2)【答案解析】(1)根据直线的参数方程为(为参数),消去参数,即可求得的的普通方程,曲线的极坐标方程为,利用极坐标化直角坐标的公式: ,即可求得答案;(2)的标准方程为,圆心为,半径为,根据点到

13、直线距离公式,即可求得答案.【题目详解】(1)直线的参数方程为(为参数),消去参数的普通方程为.曲线的极坐标方程为,利用极坐标化直角坐标的公式:的直角坐标方程为.(2)的标准方程为,圆心为,半径为圆心到的距离为,点到的距离的取值范围是.【答案点睛】本题解题关键是掌握极坐标化直角坐标的公式和点到直线距离公式,考查了分析能力和计算能力,属于中档题.19、 (1) .(2) .【答案解析】(1)根据题意,由余弦定理求得,即可求解C角的值;(2)由正弦定理和三角恒等变换的公式,化简得到,再根据为锐角三角形,求得,利用三角函数的图象与性质,即可求解.【题目详解】(1)由题意知,由余弦定理可知,又,.(2

14、)由正弦定理可知,即,又为锐角三角形,即,则,所以,综上的取值范围为.【答案点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.20、(1)见解析;(2)见解析【答案解析】(1)求导得,分类讨论和,利用导数研究含参数的函数单调性;(2)根据(1)中求得的的单调性,得出在处取得最大值为,构造函数,利用导数,推出,即可

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2