1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为( )变量x0123变量y35.57A0.9B0.85C0.75D0.52某几何体的三视图如图所示(单位
2、:cm),则该几何体的表面积是( )ABCD3在复平面内,复数对应的点的坐标为( )ABCD4已知m,n是两条不同的直线,是两个不同的平面,给出四个命题:若,则;若,则;若,则;若,则其中正确的是( )ABCD5点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为( )ABCD6已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(O为坐标原点),则双曲线C的离心率为ABCD7如图,矩形ABCD中,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:对满足题意的任意的的位置,;对满足题意
3、的任意的的位置,则( ) A命题和命题都成立B命题和命题都不成立C命题成立,命题不成立D命题不成立,命题成立8已知抛物线的焦点为,为抛物线上一点,当周长最小时,所在直线的斜率为( )ABCD9已知双曲线:的焦点为,且上点满足,则双曲线的离心率为ABCD510如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( ) A2019年12月份,全国居民消费价格环比
4、持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年12月的全国居民消费价格11若函数的图象如图所示,则的解析式可能是( )ABCD12阿基米德(公元前287年公元前212年),伟大的古希腊哲学家、数学家和物理学家,他死后的墓碑上刻着一个“圆柱容球”的立体几何图形,为纪念他发现“圆柱内切球的体积是圆柱体积的,且球的表面积也是圆柱表面积的”这一完美的结论.已知某圆柱的轴截面为正方形,其表面积为,则该圆柱的内切球体积为( )ABCD二、填空题:本题共4小题,每小题5分,共2
5、0分。13已知函数,则不等式的解集为_.14若,则的最小值为_.15在边长为的菱形中,点在菱形所在的平面内若,则_16已知数列的前项满足,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面为矩形,侧面底面,为棱的中点,为棱上任意一点,且不与点、点重合(1)求证:平面平面;(2)是否存在点使得平面与平面所成的角的余弦值为?若存在,求出点的位置;若不存在,请说明理由18(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.19(12分)已知函数.(1)讨论函数f(x)的极值点的个数;(2)若f(x)有两个极值点证明
6、.20(12分)已知函数.(1)当时,求函数的值域.(2)设函数,若,且的最小值为,求实数的取值范围.21(12分)在平面直角坐标系中,已知直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于两点A,B,求线段的长.22(10分)某调查机构为了了解某产品年产量x(吨)对价格y(千克/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每
7、吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式: 2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】计算,代入回归方程可得【题目详解】由题意,解得故选:A.【答案点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点2、D【答案解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【题目详解】根据三视图可知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【
8、答案点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.3、C【答案解析】利用复数的运算法则、几何意义即可得出【题目详解】解:复数i(2+i)2i1对应的点的坐标为(1,2),故选:C【答案点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题4、D【答案解析】根据面面垂直的判定定理可判断;根据空间面面平行的判定定理可判断;根据线面平行的判定定理可判断;根据面面垂直的判定定理可判断.【题目详解】对于,若,两平面相交,但不一定垂直,故错误;对于,若,则,故正确;对于,若,当,则与不平行,故错误;对于,若,则,故正确;故选:D【答案点睛】本题考查了线面平
9、行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.5、C【答案解析】设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【题目详解】设的中点为,连接,因此有,而,而平面,因此有平面,所以动点的轨迹平面与正方体的内切球的交线. 正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【答案点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的
10、性质,考查了空间想象能力和数学运算能力.6、B【答案解析】直线的倾斜角为,易得设双曲线C的右焦点为E,可得中,则,所以双曲线C的离心率为.故选B7、A【答案解析】作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【题目详解】如图所示,过作平面,垂足为,连接,作,连接.由图可知,所以,所以正确.由于,所以与所成角,所以,所以正确.综上所述,都正确.故选:A【答案点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题8、A【答案解析】本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可【题目详解】结合题意,绘制图像要计
11、算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A【答案点睛】本道题考查了抛物线的基本性质,难度中等9、D【答案解析】根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【题目详解】依题意得,因此该双曲线的离心率.【答案点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.10、D【答案解析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【题目详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月
12、份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以D正确.故选:D【答案点睛】此题考查了对图表数据的分析处理能力及进行简单的合情推理,属于中档题.11、A【答案解析】由函数性质,结合特殊值验证,通过排除法求得结果.【题目详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;故选:A.【答案点睛】本题考查已知函数的图象判断解析式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.12、D【答案解析】设圆柱的底面半径为,则其母线长为,由圆柱的表面积求出,代入圆柱
13、的体积公式求出其体积,结合题中的结论即可求出该圆柱的内切球体积.【题目详解】设圆柱的底面半径为,则其母线长为,因为圆柱的表面积公式为,所以,解得,因为圆柱的体积公式为,所以,由题知,圆柱内切球的体积是圆柱体积的,所以所求圆柱内切球的体积为.故选:D【答案点睛】本题考查圆柱的轴截面及表面积和体积公式;考查运算求解能力;熟练掌握圆柱的表面积和体积公式是求解本题的关键;属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】,分类讨论即可.【题目详解】由已知,若,则或解得或,所以不等式的解集为.故答案为:【答案点睛】本题考查分段函数的应用,涉及到解一元二次不等式,考查学生的计算
14、能力,是一道中档题.14、【答案解析】由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【题目详解】由题意,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值【答案点睛】利用基本不等式求最值必须具备三个条件:各项都是正数;和(或积)为定值;等号取得的条件。15、【答案解析】以菱形的中心为坐标原点建立平面直角坐标系,再设,根据求出的坐标,进而求得即可.【题目详解】解:连接设交于点以点为原点,分别以直线为轴,建立如图所示的平面直角坐标系,则:设 得,解得,或,显然得出的是定值,取则,故答案为:【答案点睛】本题主要考查了建立平面直角坐标系求解向量数量积的有关问题,属于中档题.16、【答案解析】由已知写出用代替的等式,两式相减后可得结论,同时要注意的