收藏 分享(赏)

2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc

上传人:sc****y 文档编号:12920 上传时间:2023-01-06 格式:DOC 页数:20 大小:1.81MB
下载 相关 举报
2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc_第1页
第1页 / 共20页
2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc_第2页
第2页 / 共20页
2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc_第3页
第3页 / 共20页
2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc_第4页
第4页 / 共20页
2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc_第5页
第5页 / 共20页
2023学年湖南省石门县第二中学高三考前热身数学试卷(含解析).doc_第6页
第6页 / 共20页
亲,该文档总共20页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知复数满足,则的值为( )ABCD22集合的真子集的个数为( )A7B8C31D323对于任意,

2、函数满足,且当时,函数.若,则大小关系是( )ABCD4如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥A-BEF的体积为定值D异面直线AE,BF所成的角为定值5若直线与圆相交所得弦长为,则( )A1B2CD36下列几何体的三视图中,恰好有两个视图相同的几何体是( )A正方体B球体C圆锥D长宽高互不相等的长方体7为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参加三个贫困县的调研工作,每个县至少去1人,且甲、乙两人约定去同一个贫困县,则不同的派遣方案共

3、有( )A24B36C48D648已知函数,集合,则( )ABCD9下列命题中,真命题的个数为( )命题“若,则”的否命题;命题“若,则或”;命题“若,则直线与直线平行”的逆命题.A0B1C2D310公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据: )A48B36C24D1211执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D6312

4、( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知二面角l为60,在其内部取点A,在半平面,内分别取点B,C若点A到棱l的距离为1,则ABC的周长的最小值为_14平面区域的外接圆的方程是_.15已知函数,若函数有个不同的零点,则的取值范围是_16在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)求直线和曲线的普通方程;(2)设为曲线上的动点,求点到直线距离的最小值及此时点的坐标.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在锐角中,角A,B,C所对的边分别为a,b,c.已知.(1)求的值;(2)当,且时,求的面积.

5、18(12分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围19(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65

6、元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.20(12分)已知函数(),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.21(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线

7、,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.22(10分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】由复数的除法运算整理已知求得复数z,进而求得其模.【题目详解】因为,所以故选:C【答案点睛】本题考查复数的除法运算与求复数的模,属于基础题.2、A【答案解析】计算,再计算真子集个数得到答案.【题目详解】,故真子

8、集个数为:.故选:.【答案点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.3、A【答案解析】由已知可得的单调性,再由可得对称性,可求出在单调性,即可求出结论.【题目详解】对于任意,函数满足,因为函数关于点对称,当时,是单调增函数,所以在定义域上是单调增函数.因为,所以,.故选:A.【答案点睛】本题考查利用函数性质比较函数值的大小,解题的关键要掌握函数对称性的代数形式,属于中档题.4、D【答案解析】A通过线面的垂直关系可证真假;B根据线面平行可证真假;C根据三棱锥的体积计算的公式可证真假;D根据列举特殊情况可证真假.【题目详解】A因为,所以平面,又因为平面,所以,故正确;B因为,所以,

9、且平面,平面,所以平面,故正确;C因为为定值,到平面的距离为,所以为定值,故正确;D当,取为,如下图所示:因为,所以异面直线所成角为,且,当,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【答案点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.5、A【答案解析】将圆的方程化简成标准方程,再根据垂径定理求解即可.【题目详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心

10、,得,即.故选:A【答案点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.6、C【答案解析】根据基本几何体的三视图确定【题目详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形故选:C【答案点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是解题关键7、B【答案解析】根据题意,有两种分配方案,一是,二是,然后各自全排列,再求和.【题目详解】当按照进行分配时,则有种不同的方案;当按照进行分配,则有种不同的方案.故共有36种不同的派遣方案,故选:B.【答案

11、点睛】本题考查排列组合、数学文化,还考查数学建模能力以及分类讨论思想,属于中档题.8、C【答案解析】分别求解不等式得到集合,再利用集合的交集定义求解即可.【题目详解】,,故选C【答案点睛】本题主要考查了集合的基本运算,难度容易.9、C【答案解析】否命题与逆命题是等价命题,写出的逆命题,举反例排除;原命题与逆否命题是等价命题,写出的逆否命题后,利用指数函数单调性验证正确;写出的逆命题判,利用两直线平行的条件容易判断正确.【题目详解】的逆命题为“若,则”,令,可知该命题为假命题,故否命题也为假命题;的逆否命题为“若且,则”,该命题为真命题,故为真命题;的逆命题为“若直线与直线平行,则”,该命题为真

12、命题.故选:C.【答案点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断(2)当一个命题改写成“若,则”的形式之后,判断这个命题真假的方法:若由“”经过逻辑推理,得出“”,则可判定“若,则”是真命题;判定“若,则”是假命题,只需举一反例即可10、C【答案解析】由开始,按照框图,依次求出s,进行判断。【题目详解】 ,故选C.【答案点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。11、B【答案解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最

13、大值为15,故选B.考点:程序框图.12、D【答案解析】利用,根据诱导公式进行化简,可得,然后利用两角差的正弦定理,可得结果.【题目详解】由所以,所以原式所以原式故故选:D【答案点睛】本题考查诱导公式以及两角差的正弦公式,关键在于掌握公式,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】作A关于平面和的对称点M,N,交和与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BCMB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【题目详解】作A关于平面和的对称点M,N,交和与D,E,连接MN,AM,AN,DE,根据对称性三角形

14、ABC的周长为AB+AC+BCMB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然ODl,OEl,DOE60,MOA+AON240,OA1,MON120,且OMONOA1,根据余弦定理,故MN21+1211cos1203,故MN故答案为:【答案点睛】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.14、【答案解析】作出平面区域,可知平面区域为三角形,求出三角形的三个顶点坐标,设三角形的外接圆方程为,将三角形三个顶点坐标代入圆的一般方程,求出、的值,即可得出所求圆的方程.【题目详解】作出不等式组所表示的平面区域如下图所示:由图可知,平面区域为,联立,解得,则点,同理可得点、,设的外接圆方程为,由题意可得,解得,因此,所求圆的方程为.故答案为:.【答案点睛】本题考查三角形外

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2