收藏 分享(赏)

2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc

上传人:la****1 文档编号:13115 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.87MB
下载 相关 举报
2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023学年福建省三明市重点中学高三第一次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )ABCD2已知函数(其中,)的图象关于点成中心对称,且与点相邻的一个最低点为,则对于下列判断:直线是函数图象的一条对称轴

2、;点是函数的一个对称中心;函数与的图象的所有交点的横坐标之和为.其中正确的判断是( )ABCD3已知复数,若,则的值为( )A1BCD4设递增的等比数列的前n项和为,已知,则( )A9B27C81D5三棱锥中,侧棱底面,则该三棱锥的外接球的表面积为( )ABCD6执行如图所示的程序框图,则输出的( )A2B3CD7某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A月收入的极差为60B7月份的利润最大C这12个月利润的中位数与众数均为30D这一年的总利润超过400万元8已知抛物线的焦点为,为抛物线上一点,当周长最小时,所在直线的斜率为( )AB

3、CD9设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减小,增大C增大,减小D增大,增大10在中,“”是“为钝角三角形”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件11祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件12已知椭圆的焦点分别为,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为( )ABCD二、填

4、空题:本题共4小题,每小题5分,共20分。13已知直线与圆心为的圆相交于两点,且,则实数的值为_14等边的边长为2,则在方向上的投影为_15已知实数满足则点构成的区域的面积为_,的最大值为_16设为椭圆在第一象限上的点,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知为等差数列,为等比数列,的前n项和为,满足,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.18(12分)如图,三棱柱的侧棱垂直于底面,且,是棱的中点.(1)证明:;(2)求二面角的余弦值.19(12分)已知矩阵,二阶矩阵满足.(1)求矩阵;(2)求矩阵的特征值20(12分

5、)已知椭圆的中心在坐标原点,其短半轴长为,一个焦点坐标为,点在椭圆上,点在直线上的点,且证明:直线与圆相切;求面积的最小值21(12分)在直角坐标系中,曲线的参数方程为以为极点,轴正半轴为极轴建立极坐标系,设点在曲线上,点在曲线上,且为正三角形(1)求点,的极坐标;(2)若点为曲线上的动点,为线段的中点,求的最大值22(10分)已知,且满足,证明:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【题目详解】根据三视图可

6、知,该几何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【答案点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.2、C【答案解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否详解:因为为对称中心,且最低点为,所以A=3,且 由 所以,将带入得 ,所以由此可得错误,正确,当时,所以与 有6个交点,设各个交点坐标依次为 ,则,所以正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题3、D【答案解析】由复数模的定义

7、可得:,求解关于实数的方程可得:.本题选择D选项.4、A【答案解析】根据两个已知条件求出数列的公比和首项,即得的值.【题目详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【答案点睛】本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.5、B【答案解析】由题,侧棱底面,则根据余弦定理可得 ,的外接圆圆心 三棱锥的外接球的球心到面的距离 则外接球的半径 ,则该三棱锥的外接球的表面积为 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径 公式是解答的关键6、B【答案解析】运行程序,依次进行循环,结合判断框,可得输出值.【题目详解】

8、起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【答案点睛】本题主要考查程序框图的相关知识,经过几次循环找出规律是关键,属于基础题型.7、D【答案解析】直接根据折线图依次判断每个选项得到答案.【题目详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【答案点睛】本题考查了折线图,意在

9、考查学生的理解能力和应用能力.8、A【答案解析】本道题绘图发现三角形周长最小时A,P位于同一水平线上,计算点P的坐标,计算斜率,即可【题目详解】结合题意,绘制图像要计算三角形PAF周长最小值,即计算PA+PF最小值,结合抛物线性质可知,PF=PN,所以,故当点P运动到M点处,三角形周长最小,故此时M的坐标为,所以斜率为,故选A【答案点睛】本道题考查了抛物线的基本性质,难度中等9、C【答案解析】,判断其在内的单调性即可【题目详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【答案点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题10、C【答

10、案解析】分析:从两个方向去判断,先看能推出三角形的形状是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形

11、形状对应的特征.11、A【答案解析】由题意分别判断命题的充分性与必要性,可得答案.【题目详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【答案点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.12、B【答案解析】根据题意可得易知,且,解方程可得,再利用即可求解.【题目详解】易知,且故有,则故选:B【答案点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题二、填空题:本

12、题共4小题,每小题5分,共20分。13、0或6【答案解析】计算得到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【题目详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【答案点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。14、【答案解析】建立直角坐标系,结合向量的坐标运算求解在方向上的投影即可.【题目详解】建立如图所示的平面直角坐标系,由题意可知:,则:,且,据此可知在方向上的投影为.【答案点睛】本题主要考查平面向量数量积的坐标运算,向量投影的定义与计算等知识,意在考查学生的转化能力和计算求解能力.15、8 11 【答案解析】画

13、出不等式组表示的平面区域,数形结合求得区域面积以及目标函数的最值.【题目详解】不等式组表示的平面区域如下图所示:数形结合可知,可行域为三角形,且底边长,高为,故区域面积;令,变为,显然直线过时,z最大,故.故答案为:;11.【答案点睛】本题考查简单线性规划问题,涉及区域面积的求解,属基础题.16、【答案解析】利用椭圆的参数方程,将所求代数式的最值问题转化为求三角函数最值问题,利用两角和的正弦公式和三角函数的性质,以及求导数、单调性和极值,即可得到所求最小值【题目详解】解:设点,其中,由,可设,导数为,由,可得,可得或,由,可得,即,可得,由可得函数递减;由,可得函数递增,可得时,函数取得最小值

14、,且为,则的最小值为1故答案为:1【答案点睛】本题考查椭圆参数方程的应用,利用三角函数的恒等变换和导数法求函数最值的方法,考查化简变形能力和运算能力,属于难题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【答案解析】(1)设的公差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和【题目详解】(1)设的公差为,的公比为,由,.得:,解得,;(2)由,得,为奇数时,为偶数时,【答案点睛】本题考查求等差数列和等比数列的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2