收藏 分享(赏)

2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc

上传人:g****t 文档编号:13195 上传时间:2023-01-06 格式:DOC 页数:19 大小:1.94MB
下载 相关 举报
2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc_第1页
第1页 / 共19页
2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc_第2页
第2页 / 共19页
2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc_第3页
第3页 / 共19页
2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc_第4页
第4页 / 共19页
2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc_第5页
第5页 / 共19页
2023学年重庆九龙坡区高三第二次模拟考试数学试卷(含解析).doc_第6页
第6页 / 共19页
亲,该文档总共19页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、2023学年高考数学模拟测试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD2已知直四棱柱的所有棱长相等

2、,则直线与平面所成角的正切值等于( )ABCD3已知函数在区间上恰有四个不同的零点,则实数的取值范围是( )ABCD4如图,平面四边形中,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )ABCD5以下三个命题:在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;对分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握越大;其中真命题的个数为( )A3B2C1D06设等差数列的前项和为,若,则( )A21B22C11D127设,则ABCD8ABCD9已知偶函数在区间内

3、单调递减,则,满足( )ABCD10复数(为虚数单位),则等于( )A3BC2D11设集合,则( )ABCD12国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数(PMI)如下图所示.则下列结论中错误的是( )A12个月的PMI值不低于50%的频率为B12个月的PMI值的平均值低于50%C12个月的PMI值的众数为49.4%D12个月的PMI值的中位数为50.3%二、填空题:本题共4小题,每小题5分,共20分。13某高中共有1800人,其中高一、高二、高三年级的人数依次成等差数列,现用分层抽样的方法从中抽取60人,那么高二

4、年级被抽取的人数为_14已知一个正四棱锥的侧棱与底面所成的角为,侧面积为,则该棱锥的体积为_15为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量与时间的函数关系为(如图所示),实验表明,当药物释放量对人体无害. (1)_;(2)为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过_分钟人方可进入房间.16若函数为偶函数,则 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)讨论的单调性;(2)当时,证明:.18(12分)如图所示,已知平面,为等边三角形,为边上的中点,且.()求证:面;()求证:平

5、面平面;()求该几何体的体积19(12分)已知椭圆的右顶点为,点在轴上,线段与椭圆的交点在第一象限,过点的直线与椭圆相切,且直线交轴于.设过点且平行于直线的直线交轴于点.()当为线段的中点时,求直线的方程;()记的面积为,的面积为,求的最小值.20(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由21(12分)在平面直角坐标系中,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程22(10分)在三角

6、形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角, (1)求的值; (2)求边的长.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【答案点睛】本题考查程序框图,是基础题2、D【答案解析】以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系求解平面的法向量,利用线面角的向量公式即得解.【题目详解】如图所示的直四棱柱,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直

7、线为轴,建立空间直角坐标系设,则,设平面的法向量为,则取,得设直线与平面所成角为,则,直线与平面所成角的正切值等于故选:D【答案点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.3、A【答案解析】函数的零点就是方程的解,设,方程可化为,即或,求出的导数,利用导数得出函数的单调性和最值,由此可根据方程解的个数得出的范围【题目详解】由题意得有四个大于的不等实根,记,则上述方程转化为,即,所以或因为,当时,单调递减;当时,单调递增;所以在处取得最小值,最小值为因为,所以有两个符合条件的实数解,故在区间上恰有四个不相等的零点,需且故选:A【答案点睛】本题考查复

8、合函数的零点考查转化与化归思想,函数零点转化为方程的解,方程的解再转化为研究函数的性质,本题考查了学生分析问题解决问题的能力4、C【答案解析】由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【题目详解】解:由,翻折后得到,又,则面,可知又因为,则面,于是,因此三棱锥外接球球心是的中点计算可知,则外接球半径为1,从而外接球表面积为故选:C.【答案点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题5、C【答案解析】根据抽样方式的特征,可判断;根据相关系数的性质,可判断;

9、根据独立性检验的方法和步骤,可判断【题目详解】根据抽样是间隔相同,且样本间无明显差异,故应是系统抽样,即为假命题;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故为真命题;对分类变量与的随机变量的观测值来说,越小,“与有关系”的把握程度越小,故为假命题故选:【答案点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题6、A【答案解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【题目详解】解:由为等差数列,可知也成等差数列,所以 ,即,解得.故选:A.【答案点睛】本题考查了等差数列的性

10、质,考查了等差中项.对于等差数列,一般用首项和公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.7、C【答案解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8、A【答案解析】直接利用复数代数形式的乘除运算化简

11、得答案.【题目详解】本题正确选项:【答案点睛】本题考查复数代数形式的乘除运算,是基础的计算题9、D【答案解析】首先由函数为偶函数,可得函数在内单调递增,再由,即可判定大小【题目详解】因为偶函数在减,所以在上增,.故选:D【答案点睛】本题考查函数的奇偶性和单调性,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,属于中档题.10、D【答案解析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【题目详解】,所以,故选:D.【答案点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.11、A【答案解析】解出集合

12、,利用交集的定义可求得集合.【题目详解】因为,又,所以.故选:A.【答案点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.12、D【答案解析】根据图形中的信息,可得频率、平均值的估计、众数、中位数,从而得到答案.【题目详解】对A,从图中数据变化看,PMI值不低于50%的月份有4个,所以12个月的PMI值不低于50%的频率为,故A正确;对B,由图可以看出,PMI值的平均值低于50%,故B正确;对C,12个月的PMI值的众数为49.4%,故C正确,;对D,12个月的PMI值的中位数为49.6%,故D错误故选:D.【答案点睛】本题考查频率、平均值的估计、众数、中位

13、数计算,考查数据处理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由三个年级人数成等差数列和总人数可求得高二年级共有人,根据抽样比可求得结果.【题目详解】设高一、高二、高三人数分别为,则且,解得:,用分层抽样的方法抽取人,那么高二年级被抽取的人数为人故答案为:.【答案点睛】本题考查分层抽样问题的求解,涉及到等差数列的相关知识,属于基础题.14、【答案解析】如图所示,正四棱锥,为底面的中心,点为的中点,则,设,根据正四棱锥的侧面积求出的值,再利用勾股定理求得正四棱锥的高,代入体积公式,即可得到答案.【题目详解】如图所示,正四棱锥,为底面的中心,点为的中点,则

14、,设,.故答案为:.【答案点睛】本题考查棱锥的侧面积和体积,考查函数与方程思想、转化与化归思想,考查运算求解能力.15、2 40 【答案解析】(1)由时,即可得出的值;(2)解不等式组,即可得出答案.【题目详解】(1)由图可知,当时,即(2)由题意可得,解得则为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过分钟人方可进入房间.故答案为:(1)2;(2)40【答案点睛】本题主要考查了分段函数的应用,属于中档题.16、1【答案解析】试题分析:由函数为偶函数函数为奇函数,考点:函数的奇偶性【方法点晴】本题考查导函数的奇偶性以及逻辑思维能力、等价转化能力、运算求解能力、特殊与一般思想、数形结合思想与转化思想,具有一定的综合性和灵活性,属于较难题型首先利

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 考试真题

copyright@ 2008-2023 wnwk.com网站版权所有

经营许可证编号:浙ICP备2024059924号-2