1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,满足,则的取值范围是( )ABCD2已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,则当时,的最大值是( )A8B9C10D113已知是椭圆和双曲线的公
2、共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为( )ABCD4如图是一个几何体的三视图,则该几何体的体积为()ABCD5设复数满足为虚数单位),则( )ABCD6已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )ABCD7已知双曲线),其右焦点F的坐标为,点是第一象限内双曲线渐近线上的一点,为坐标原点,满足,线段交双曲线于点.若为的中点,则双曲线的离心率为( )AB2CD8函数的图象大致是()ABCD9设等比数列的前项和为,若,则的值为( )ABCD10设,是方程的两个不等实数根,记().下列两
3、个命题( )数列的任意一项都是正整数;数列存在某一项是5的倍数.A正确,错误B错误,正确C都正确D都错误11下列四个图象可能是函数图象的是( )ABCD12已知函数,若函数的图象恒在轴的上方,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知为等差数列,为其前n项和,若,则_.14在直三棱柱内有一个与其各面都相切的球O1,同时在三棱柱外有一个外接球.若,,,则球的表面积为_.15已知多项式(x1)3(x2)2x5a1x4a2x3a3x2a4xa5,则a4_,a5_16设为数列的前项和,若,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
4、7(12分)已知函数(1)若,求的取值范围;(2)若,对,不等式恒成立,求的取值范围18(12分)交通部门调查在高速公路上的平均车速情况,随机抽查了60名家庭轿车驾驶员,统计其中有40名男性驾驶员,其中平均车速超过的有30人,不超过的有10人;在其余20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并据此判断是否有的把握认为,家庭轿车平均车速超过与驾驶员的性别有关;平均车速超过的人数平均车速不超过的人数合计男性驾驶员女性驾驶员合计(2)根据这些样本数据来估计总体,随机调查3辆家庭轿车,记这3辆车中,驾驶员为女性且平均车速不超过的人数为,假定抽取的结果相互独立,
5、求的分布列和数学期望.参考公式:其中临界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82819(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为(为参数).()求曲线C1和C2的极坐标方程:()设射线=(0)分别与曲线C1和C2相交于A,B两点,求|AB|的值20(12分)已知()过点,且当时,函数取得最大值1.(1)将函数的图象向右平移个单位得到函数,求函数的表达式;(2)在(1)的条件下,函数,求在上的值域.21(12分)已知函数(
6、),是的导数.(1)当时,令,为的导数.证明:在区间存在唯一的极小值点;(2)已知函数在上单调递减,求的取值范围.22(10分)如图,设点为椭圆的右焦点,圆过且斜率为的直线交圆于两点,交椭圆于点两点,已知当时,(1)求椭圆的方程.(2)当时,求的面积.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】首先绘制出可行域,再绘制出目标函数,根据可行域范围求出目标函数中的取值范围.【题目详解】由题知,满足,可行域如下图所示,可知目标函数在点处取得最小值,故目标函数的最小值为,故的取值范围
7、是.故选:D.【答案点睛】本题主要考查了线性规划中目标函数的取值范围的问题,属于基础题.2、B【答案解析】根据题意计算,解不等式得到答案.【题目详解】是以1为首项,2为公差的等差数列,.是以1为首项,2为公比的等比数列,.,解得.则当时,的最大值是9.故选:.【答案点睛】本题考查了等差数列,等比数列,f分组求和,意在考查学生对于数列公式方法的灵活运用.3、A【答案解析】设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得: ,解得,然后在中,由余弦定理得:,化简求解.【题目详解】设椭圆的长半轴长为,双曲线的长半轴长为 ,由椭圆和双曲线的定义得: ,解得,设,在中,由余弦定理得: ,
8、 化简得,即.故选:A【答案点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.4、A【答案解析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【题目详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,高为.该几何体的体积为故选:A.【答案点睛】本题考查三视图及棱柱的体积,属于基础题.5、B【答案解析】易得,分子分母同乘以分母的共轭复数即可.【题目详解】由已知,所以.故选:B.【答案点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.6、D【答案解析】根据题意,求得的坐标,根据
9、点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【题目详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【答案点睛】本题考查椭圆离心率的求解,难点在于根据题意求得点的坐标,属中档题.7、C【答案解析】计算得到,代入双曲线化简得到答案.【题目详解】双曲线的一条渐近线方程为,是第一象限内双曲线渐近线上的一点,故,故,代入双曲线化简得到:,故.故选:.【答案点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.8、C【答案解析】根据函数奇偶性可排除AB选项;结合特殊值,即
10、可排除D选项.【题目详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【答案点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.9、C【答案解析】求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【题目详解】设等比数列的公比为,因此,.故选:C.【答案点睛】本题考查等比数列求和公式的应用,解答的关键就是求出等比数列的公比,考查计算能力,属于基础题.10、A【答案解析】利用韦达定理可得,结合可推出,再计算出,从而推出正确;再利用递推公式依次计算数列中的各项,以此判断的正误.【题目详解】因为,是方程的两个不等实数根,所以,因为,所以,即当时,数列中的任一
11、项都等于其前两项之和,又,所以,以此类推,即可知数列的任意一项都是正整数,故正确;若数列存在某一项是5的倍数,则此项个位数字应当为0或5,由,依次计算可知,数列中各项的个位数字以1,3,4,7,1,8,9,7,6,3,9,2为周期,故数列中不存在个位数字为0或5的项,故错误;故选:A.【答案点睛】本题主要考查数列递推公式的推导,考查数列性质的应用,考查学生的综合分析以及计算能力.11、C【答案解析】首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【题目详解】的定义域为,其图象可由的图
12、象沿轴向左平移1个单位而得到,为奇函数,图象关于原点对称,的图象关于点成中心对称.可排除A、D项.当时,B项不正确.故选:C【答案点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.12、B【答案解析】函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围【题目详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B【答案点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成
13、立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】试题分析:因为是等差数列,所以,即,又,所以,所以故答案为1【考点】等差数列的基本性质【名师点睛】在等差数列五个基本量,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用.14、【答案解析】先求出球O1的半径,再求出球的半径,即得球的表面积.【题目详解】解:,,,, 设球O1的半径为,由题得,所以棱柱的侧棱为.由题得棱柱外接球的直径为,所以外接球的半径为,所以球的表面积为.故答案为:【答案点睛】本题主要考查几何体的内切球和外接球问题,考查球的表面积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.15、16 4 【答案解析】只需令x0,易得a5,再由(x1)3(x2)2(x1)52(x1)4(x1)3,可得a42.【题目详解】令x0,得a5(01)3(02)24,而(x1)3(x2)2(x1)3(x1)22(x1)1(x1)52(x1)4(x1)3;则a4258316.故答案为:16,4.【答案点睛】本题主要考查了多项式展开中的特定项的求