1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若函数有三个零点,则实数的取值范围是( )ABCD2我国古代数学著作九章算术有如下问题:“今有蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:
2、“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD3a为正实数,i为虚数单位,则a=( )A2BCD14已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件5如图,正方体中,分别为棱、的中点,则下列各直线中,不与平面平行的是( )A直线B直线C直线D直线6已知平面向量满足与的夹角为,且,则实数的值为( )ABCD7已知复数z(1+2i)(1+ai)(aR),若zR,则
3、实数a( )ABC2D28存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( )ABCD9已知,分别为内角,的对边,的面积为,则( )AB4C5D10已知函数,若函数在上有3个零点,则实数的取值范围为( )ABCD11为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:越小,则国民分配越公平;设劳伦茨曲线对应的函数为,则对,均有;若某国家
4、某年的劳伦茨曲线近似为,则;若某国家某年的劳伦茨曲线近似为,则.其中正确的是:ABCD12德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有割圆密率捷法一书,为我国用级数计算开创了先河.如图所示的程序框图可以用莱布尼兹“关于的级数展开式”计算的近似值(其中P表示的近似值),若输入,则输出的结果是
5、( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和为,且成等差数列,数列的前项和为,则满足的最小正整数的值为_.14已知函数,对于任意都有,则的值为_.15已知,其中,为正的常数,且,则的值为_.16已知复数(为虚数单位)为纯虚数,则实数的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:组别男235151812女051010713 (1)若规定问卷得分不低于
6、70分的市民称为“环保关注者”,请完成答题卡中的列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环保达人”视频率为概率在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动每次抽奖获得红包的金额和对应的概率.如下表:红包金额(单位:元)1020概率现某市民要参加此次问卷调查,记(单位:元)为该市民参加间卷调查获得的红包金额,求的分布列及数学期望附表及公式:
7、0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.19(12分)已知函数(1)当时,求不等式的解集;(2)的图象与两坐标轴的交点分别为,若三角形的面积大于,求参数的取值范围.20(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了
8、手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B
9、级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.21(12分)在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(1)写出的极坐标方程与直线的直角坐标方程;(2)曲线上是否存在不同的两点,(以上两点坐标均为极坐标,),使点、到的距离都为3?若存在,求的值;若不存在,请说明理由.22(10
10、分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据所给函数解析式,画出函数图像.结合图像,分段讨论函数的零点情况:易知为的一个零点;对于当时,由代入解析式解方程可求得零点,结合即可求得的范围;对于当时,结合导函数,结合导数的几何意义即可判断的范围.综合后可得的范围.【题目详解】根据题意,画出函数图像如下图所示:函数的零点,即.由图像可知,所以是的一个零点,当时,若,则,即,所以,
11、解得;当时,则,且若在时有一个零点,则,综上可得,故选:B.【答案点睛】本题考查了函数图像的画法,函数零点定义及应用,根据零点个数求参数的取值范围,导数的几何意义应用,属于中档题.2、C【答案解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【题目详解】由题意可得莞草与蒲草第n天的长度分别为 据题意得:, 解得2n12, n21故选:C【答案点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题3、B【答案解析】,选B.4、A【答案解析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【题目详解】
12、由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【答案点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.5、C【答案解析】充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与 相交,判断C的正误.根据,判断D的正误.【题目详解】在正方体中,因为 ,所以 平面,故A正确. 因为,所以,所以平面 故B正确.因为,所以平面,故D正确.因为与 相交,所以 与平面 相交,故C错误.故选:C【答案点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.6
13、、D【答案解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【题目详解】依题意得由,得即,解得.故选:.【答案点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.7、D【答案解析】化简z(1+2i)(1+ai)=,再根据zR求解.【题目详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【答案点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.8、D【答案解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【题目详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【答案
14、点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.9、D【答案解析】由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.【题目详解】解:,即,即. ,则.,解得., 故选:D.【答案点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.10、B【答案解析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【题目详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【答案点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.11、A【答案解